Shift from coral to macroalgae dominance on a volcanically acidified reef, supplement to: Enochs, I C; Manzello, Derek P; Donham, E M; Kolodziej, Graham; Okano, R; Johnston, Lyza; Young, C; Iguel, John; Edwards, C B; Fox, M D; Valentino, L; Johnson, Steven; Benavente, D; Clark, S J; Carlton, R; Burton, T; Eynaud, Y; Price, Nichole N (2015): Shift from coral to macroalgae dominance on a volcanically acidified reef. Nature Climate Change, 5(12), 1083-1088

Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants2, most notably...

Full description

Bibliographic Details
Main Authors: Enochs, I C, Manzello, Derek P, Donham, E M, Kolodziej, Graham, Okano, R, Johnston, Lyza, Young, C, Iguel, John, Edwards, C B, Fox, M D, Valentino, L, Johnson, Steven, Benavente, D, Clark, S J, Carlton, R, Burton, T, Eynaud, Y, Price, Nichole N
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2015
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.867324
https://doi.pangaea.de/10.1594/PANGAEA.867324
Description
Summary:Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants2, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals3. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state4, 5. This study provides field evidence that acidification can lead to macroalgae dominance on reefs. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-10-28.