Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations, supplement to: Li, Futian; Beardall, John; Collins, Sinéad; Gao, Kunshan (2016): Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Global Change Biology

Studies on the long-term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population...

Full description

Bibliographic Details
Main Authors: Li, Futian, Beardall, John, Collins, Sinéad, Gao, Kunshan
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2017
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.867319
https://doi.pangaea.de/10.1594/PANGAEA.867319
Description
Summary:Studies on the long-term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population of the model diatom Phaeodactylum tricornutum, after growing under elevated CO2 (1000 matm, HCL, pHT: 7.70) for 1860 generations, showed significant differences in photosynthesis and growth from a population maintained in ambient CO2 and then transferred to elevated CO2 for 20 generations (HC). The HCL population had lower mitochondrial respiration, than did the control population maintained in ambient CO2 (400 matm, LCL, pHT: 8.02) for 1860 generations. Although the cells had higher respiratory carbon loss within 20 generations under the elevated CO2, being consistent to previous findings, they down-regulated their respiration to sustain their growth in longer duration under the OA condition. Responses of phytoplankton to OA may depend on the timescale for which they are exposed due to fluctuations in physiological traits over time. This study provides the first evidence that populations of the model species, P. tricornutum, differ phenotypically from each other after having been grown for differing spans of time under OA conditions, suggesting that long-term changes should be measured to understand responses of primary producers to OA, especially in waters with diatom-dominated phytoplankton assemblages. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-10-24.