Colony-specific calcification and mortality under ocean acidification in the branching coral Montipora digitata, supplement to: Kavousi, Javid; Tanaka, Yasuaki; Nishida, Kozue; Suzuki, Atsushi; Nojiri, Yukihiro; Nakamura, Takashi (2016): Colony-specific calcification and mortality under ocean acidification in the branching coral Montipora digitata. Marine Environmental Research, 119, 161-165

Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under...

Full description

Bibliographic Details
Main Authors: Kavousi, Javid, Tanaka, Yasuaki, Nishida, Kozue, Suzuki, Atsushi, Nojiri, Yukihiro, Nakamura, Takashi
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2016
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.864505
https://doi.pangaea.de/10.1594/PANGAEA.864505
Description
Summary:Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-09-12.