Differential impacts of elevated CO2 and acidosis on the energy budget of gill and liver cells from Atlantic cod ...

Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabol...

Full description

Bibliographic Details
Main Authors: Stapp, Laura, Kreiss, Cornelia M, Pörtner, Hans-Otto, Lannig, Gisela
Format: Dataset
Language:English
Published: PANGAEA 2016
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.861259
https://doi.pangaea.de/10.1594/PANGAEA.861259
Description
Summary:Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabolism of gill and liver cells of Atlantic cod. Exposure media mimicked blood conditions in vivo, either during normo- or hypercapnia and at control or acidic extracellular pH (pHe). We determined metabolic rate and energy expenditure for protein biosynthesis, Na+/K+-ATPase and H+-ATPase and considered nutrition status by measurements of metabolic rate and protein biosynthesis in media with and without free amino acids (FAA). Addition of FAA stimulated hepatic but not branchial oxygen consumption. Normo- and hypercapnic acidosis as well as hypercapnia at control pHe depressed metabolic stimulation of hepatocytes. In gill cells, acidosis depressed respiration independent of PCO2 and FAA levels. For both cell types, ... : Supplement to: Stapp, Laura; Kreiss, Cornelia M; Pörtner, Hans-Otto; Lannig, Gisela (2015): Differential impacts of elevated CO2 and acidosis on the energy budget of gill and liver cells from Atlantic cod, Gadus morhua. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 160-167 ...