Combined effects of short-term ocean acidification and heat shock in a benthic copepod Tigriopus japonicus Mori, supplement to: Li, Wei; Han, Guodong; Dong, Yunwei; Ishimatsu, Atsushi; Russell, Bayden D; Gao, Kunshan (2015): Combined effects of short-term ocean acidification and heat shock in a benthic copepod Tigriopus japonicus Mori. Marine Biology, 162(9), 1901-1912

Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical enviro...

Full description

Bibliographic Details
Main Authors: Li, Wei, Han, Guodong, Dong, Yunwei, Ishimatsu, Atsushi, Russell, Bayden D, Gao, Kunshan
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2015
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.859433
https://doi.pangaea.de/10.1594/PANGAEA.859433
Description
Summary:Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-04-08.