(Table 1) Biological and chemical characteristics of surface water stations during Nathaniel B. Palmer cruise NBP06-08 to the Ross Sea ...

We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3- was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From th...

Full description

Bibliographic Details
Main Authors: Tortell, Philippe Daniel, Trimborn, Scarlett, Li, Y, Rost, Björn, Payne, Christopher D
Format: Dataset
Language:English
Published: PANGAEA 2010
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.858519
https://doi.pangaea.de/10.1594/PANGAEA.858519
Description
Summary:We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3- was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3-/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U/[mg chl a] (mean 4.1). Measurements of short-term C-fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half-saturation constant for inorganic carbon uptake (K1/2) of ~380 mM. Comparison of our early springtime results with published data from late-season Ross Sea assemblages showed ... : Supplement to: Tortell, Philippe Daniel; Trimborn, Scarlett; Li, Y; Rost, Björn; Payne, Christopher D (2010): Inorganic carbon utilization by Ross Sea phytoplankton across natural and experimental CO2 gradients. Journal of Phycology, 46(3), 433-443 ...