Temperature, salinity, methane concentration, oxidation rates and methanotrophic cell number at Svalbard seeps in summer 2011 and 2012 (cruises POS419 and MSM21/4), supplement to: Steinle, Lea; Graves, Carolyn; Treude, Tina; Ferre, Benedicte; Biastoch, Arne; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachael H; Behrens, Erik; Böning, Claus W; Greinert, Jens; Sapart, Célia-Julia; Scheinert, Markus; Sommer, Stefan; Lehmann, Moritz F; Niemann, Helge (2015): Water column methanotrophy controlled by a rapid oceanographic switch. Nature Geoscience, 8(5), 378–382

Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation to the atmosphere. The size and activity of methanotr...

Full description

Bibliographic Details
Main Authors: Steinle, Lea, Graves, Carolyn, Treude, Tina, Ferre, Benedicte, Biastoch, Arne, Bussmann, Ingeborg, Berndt, Christian, Krastel, Sebastian, James, Rachael H, Behrens, Erik, Böning, Claus W, Greinert, Jens, Sapart, Célia-Julia, Scheinert, Markus, Sommer, Stefan, Lehmann, Moritz F, Niemann, Helge
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2015
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.844013
https://doi.pangaea.de/10.1594/PANGAEA.844013
Description
Summary:Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation to the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics, but little is known about the effects of ocean currents. Here, we report measurements of methanotrophic activity and biomass (CARD-FISH) at methane seeps west of Svalbard, and related them to physical water mass properties (CTD) and modelled current dynamics. We show that cold bottom water containing a large number of aerobic methanotrophs was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current, constitutes a rapid oceanographic switch severely reducing methanotrophic activity in the water column. Strong and fluctuating currents are widespread oceanographic features common at many methane seep systems and are thus likely to globally affect methane oxidation in the ocean water column.