The potential of ocean acidifi cation on suppressing larval development in the Pacifi c oyster Crassostrea gigas and blood cockle Arca infl ata Reeve, supplement to: Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Mao, Yuze; Bian, Dapeng; Fang, Jianguang (2014): The potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arca inflata Reeve. Chinese Journal of Oceanology and Limnology, 32(6), 1307-1313

We evaluated the effect of pH on larval development in larval Pacific oyster (Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development i...

Full description

Bibliographic Details
Main Authors: Li, Jiaqi, Jiang, Zengjie, Zhang, Jihong, Mao, Yuze, Bian, Dapeng, Fang, Jianguang
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2014
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.841041
https://doi.pangaea.de/10.1594/PANGAEA.841041
Description
Summary:We evaluated the effect of pH on larval development in larval Pacific oyster (Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development inhibited larval shell formation in both species. Compared with the control, larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3. Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3. However, when exposure was delayed until 24 h post fertilization, shell formation was only inhibited in blood cockle larvae reared at pH 7.3. Thus, the early embryonic stages were more sensitive to acidified conditions. Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves. Although the effects appear subtle, they may accumulate and lead to subsequent issues during later larval development. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-12-25.