Effects of increasing seawater carbon dioxide concentrations on chain formation of the diatom Asterionellopsis glacialis ...

Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distin...

Full description

Bibliographic Details
Main Authors: Barcelos e Ramos, Joana, Schulz, Kai Georg, Brownlee, Colin, Sett, Scarlett, Azevedo, Eduardo Brito
Format: Dataset
Language:English
Published: PANGAEA 2014
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.836367
https://doi.pangaea.de/10.1594/PANGAEA.836367
Description
Summary:Diatoms can occur as single cells or as chain-forming aggregates. These two strategies affect buoyancy, predator evasion, light absorption and nutrient uptake. Adjacent cells in chains establish connections through various processes that determine strength and flexibility of the bonds, and at distinct cellular locations defining colony structure. Chain length has been found to vary with temperature and nutrient availability as well as being positively correlated with growth rate. However, the potential effect of enhanced carbon dioxide (CO2) concentrations and consequent changes in seawater carbonate chemistry on chain formation is virtually unknown. Here we report on experiments with semi-continuous cultures of the freshly isolated diatom Asterionellopsis glacialis grown under increasing CO2 levels ranging from 320 to 3400 µatm. We show that the number of cells comprising a chain, and therefore chain length, increases with rising CO2 concentrations. We also demonstrate that while cell division rate changes ... : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-09-30. ...