Seawater acidification by CO2 in a coastal lagoon environment: Effects on life history traits of juvenile mussels Mytilus galloprovincialis, supplement to: Range, P; Pilò, D; Ben-Hamadou, R; ChÌcharo, M A; Matias, D; Joaquim, S; Oliveira, A P; ChÌcharo, L (2012): Seawater acidification by CO2 in a coastal lagoon environment: Effects on life history traits of juvenile mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 424-425, 89-98

The carbonate chemistry of seawater from the Ria Formosa lagoon was experimentally manipulated, by diffusing pure CO2, to attain two reduced pH levels, by -0.3 and -0.6 pH units, relative to unmanipulated seawater. After 84 days of exposure, no differences were detected in terms of growth (somatic o...

Full description

Bibliographic Details
Main Authors: Range, P, Pilò, D, Ben-Hamadou, R, ChÌcharo, M A, Matias, D, Joaquim, S, Oliveira, A P, ChÌcharo, L
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2012
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.833632
https://doi.pangaea.de/10.1594/PANGAEA.833632
Description
Summary:The carbonate chemistry of seawater from the Ria Formosa lagoon was experimentally manipulated, by diffusing pure CO2, to attain two reduced pH levels, by -0.3 and -0.6 pH units, relative to unmanipulated seawater. After 84 days of exposure, no differences were detected in terms of growth (somatic or shell) or mortality of juvenile mussels Mytilus galloprovincialis. The naturally elevated total alkalinity of the seawater (= 3550 µmol/kg) prevented under-saturation of CaCO3, even under pCO2 values exceeding 4000 µatm, attenuating the detrimental effects on the carbonate supply-side. Even so, variations in shell weight showed that net calcification was reduced under elevated CO2 and reduced pH, although the magnitude and significance of this effect varied among size-classes. Most of the loss of shell material probably occurred as post-deposition dissolution in the internal aragonitic nacre layer. Our results show that, even when reared under extreme levels of CO2-induced acidification, juvenile M. galloprovincialis can continue to calcify and grow in this coastal lagoon environment. The complex responses of bivalves to ocean acidification suggest a large degree of interspecific and intraspecific variability in their sensitivity to this type of perturbation. Further research is needed to assess the generality of these patterns and to disentangle the relative contributions of acclimation to local variations in seawater chemistry and genetic adaptation. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-06-26.