Small Changes in pH Have Direct Effects on Marine Bacterial Community Composition: A Microcosm Approach ...

As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come in...

Full description

Bibliographic Details
Main Author: Krause, Evamaria
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2014
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.832471
https://doi.pangaea.de/10.1594/PANGAEA.832471
Description
Summary:As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North ... : Supplement to: Krause, Evamaria; Wichels, Antje; Giménez, Luis; Lunau, Mirko; Schilhabel, Markus B; Gerdts, Gunnar (2012): Small Changes in pH Have Direct Effects on Marine Bacterial Community Composition: A Microcosm Approach. PLoS ONE, 7(10), e47035 ...