Stable isotope record and sediment composition of the subantarctic Pacific, supplement to: Waddell, Lindsey M; Hendy, Ingrid L; Moore, Theodore C; Lyle, Mitchell W (2009): Ventilation of the abyssal Southern Ocean during the late Neogene: A new perspective from the subantarctic Pacific. Paleoceanography, 24(3), PA3206

Benthic foraminiferal stable carbon isotope records from the South Atlantic show significant declines toward more "Pacific-like" values at ~7 and ~2.7 Ma, and it has been posited that these shifts may mark steps toward increased CO2 sequestration in the deep Southern Ocean as climate coole...

Full description

Bibliographic Details
Main Authors: Waddell, Lindsey M, Hendy, Ingrid L, Moore, Theodore C, Lyle, Mitchell W
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2009
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.831703
https://doi.pangaea.de/10.1594/PANGAEA.831703
Description
Summary:Benthic foraminiferal stable carbon isotope records from the South Atlantic show significant declines toward more "Pacific-like" values at ~7 and ~2.7 Ma, and it has been posited that these shifts may mark steps toward increased CO2 sequestration in the deep Southern Ocean as climate cooled over the late Neogene. We generated new stable isotope records from abyssal subantarctic Pacific cores MV0502-4JC and ELT 25-11. The record from MV0502-4JC suggests that the Southern Ocean remained well mixed and free of vertical or interbasinal d13C gradients following the late Miocene carbon shift (LMCS). According to the records from MV0502-4JC and ELT 25-11, however, cold, low d13C bottom waters developed in the Southern Ocean in the late Pliocene and persisted until ~1.7 Ma. These new data suggest that while conditions in the abyssal Southern Ocean following the LMCS were comparable to the present day, sequestration of respired CO2 may have increased in the deepest parts of the Southern Ocean during the late Pliocene, a critical period for the growth and establishment of the Northern Hemisphere ice sheets.