Ocean acidification induces budding in larval sea urchins, supplement to: Chan, Kit Yu Karen; Grünbaum, Daniel; Arnberg, Maj; Thorndyke, Mike; Dupont, Sam (2012): Ocean acidification induces budding in larval sea urchins. Marine Biology, 160(8), 2129-2135

Ocean acidification (OA), the reduction of ocean pH due to hydration of atmospheric CO2, is known to affect growth and survival of marine invertebrate larvae. Survival and transport of vulnerable planktonic larval stages play important roles in determining population dynamics and community structure...

Full description

Bibliographic Details
Main Authors: Chan, Kit Yu Karen, Grünbaum, Daniel, Arnberg, Maj, Thorndyke, Mike, Dupont, Sam
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2013
Subjects:
Age
pH
Online Access:https://dx.doi.org/10.1594/pangaea.830736
https://doi.pangaea.de/10.1594/PANGAEA.830736
Description
Summary:Ocean acidification (OA), the reduction of ocean pH due to hydration of atmospheric CO2, is known to affect growth and survival of marine invertebrate larvae. Survival and transport of vulnerable planktonic larval stages play important roles in determining population dynamics and community structures in coastal ecosystems. Here, we show that larvae of the purple urchin, Strongylocentrotus purpuratus, underwent high-frequency budding (release of blastula-like particles) when exposed to elevated pCO2 level (>700 µatm). Budding was observed in >50 % of the population and was synchronized over short periods of time (~24 h), suggesting this phenomenon may be previously overlooked. Although budding can be a mechanism through which larval echinoids asexually reproduce, here, the released buds did not develop into viable clones. OA-induced budding and the associated reduction in larval size suggest new hypotheses regarding physiological and ecological tradeoffs between short-term benefits (e.g. metabolic savings and predation escape) and long-term costs (e.g. tissue loss and delayed development) in the face of climate change. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-03-17.