Seawater carbonate chemistry, the abiotic conditions in the fluid surrounding the embryo, growth, calcification of the cuttlefish Sepia officinalis in a laboratory experiment, supplement to: Dorey, Narimane; Melzner, Frank; Martin, Sophie; Oberhänsli, F; Teyssié, Jean-Louis; Bustamante, Paco; Gattuso, Jean-Pierre; Lacoue-Labarthe, Thomas (2012): Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis. Marine Biology, 160(8), 2007-2022

This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of...

Full description

Bibliographic Details
Main Authors: Dorey, Narimane, Melzner, Frank, Martin, Sophie, Oberhänsli, F, Teyssié, Jean-Louis, Bustamante, Paco, Gattuso, Jean-Pierre, Lacoue-Labarthe, Thomas
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2013
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.830713
https://doi.pangaea.de/10.1594/PANGAEA.830713
Description
Summary:This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-03-18.