Biological impacts of enhanced alkalinity in Carcinus maenas, supplement to: Cripps, Gemma; Widdicombe, Stephen; Spicer, John I; Findlay, Helen S (2013): Biological impacts of enhanced alkalinity in Carcinus maenas. Marine Pollution Bulletin, 71(1-2), 190-198

Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduct...

Full description

Bibliographic Details
Main Authors: Cripps, Gemma, Widdicombe, Stephen, Spicer, John I, Findlay, Helen S
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2013
Subjects:
Sex
pH
Online Access:https://dx.doi.org/10.1594/pangaea.829880
https://doi.pangaea.de/10.1594/PANGAEA.829880
Description
Summary:Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-02-24. For further data (e.g., immature extracellular pH, TCO2, pCO2 and HCO3), please contact related PI.