Experiment: changing carbonate chemistry influence on coccoliths formed by Emiliania huxleyi ...

The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, no...

Full description

Bibliographic Details
Main Author: Bach, Lennart Thomas
Format: Dataset
Language:English
Published: PANGAEA 2014
Subjects:
pH
-
Online Access:https://dx.doi.org/10.1594/pangaea.829081
https://doi.pangaea.de/10.1594/PANGAEA.829081
Description
Summary:The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3- ), carbonate ion (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor ... : Supplement to: Bach, Lennart Thomas; Bauke, Christine; Meier, K J Sebastian; Riebesell, Ulf; Schulz, Kai Georg (2012): Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi. Biogeosciences, 9(8), 3449-3463 ...