Timing of the most recent Neoglacial advance and retreat in Potter Cove, Antarctic Peninsula, supplement to: Simms, Alexander R; Ivins, Erik; DeWitt, Regina; Kouremenos, Peter; Simkins, Lauren M (2012): Timing of the most recent Neoglacial advance and retreat in the South Shetland Islands, Antarctic Peninsula: insights from raised beaches and Holocene uplift rates. Quaternary Science Reviews, 47, 41-55

The timing of the most recent Neoglacial advance in the Antarctic Peninsula is important for establishing global climate teleconnections and providing important post-glacial rebound corrections to gravity-based satellite measurements of ice loss. However, obtaining accurate ages from terrestrial geo...

Full description

Bibliographic Details
Main Authors: Simms, Alexander R, Ivins, Erik, DeWitt, Regina, Kouremenos, Peter, Simkins, Lauren M
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2012
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.818401
https://doi.pangaea.de/10.1594/PANGAEA.818401
Description
Summary:The timing of the most recent Neoglacial advance in the Antarctic Peninsula is important for establishing global climate teleconnections and providing important post-glacial rebound corrections to gravity-based satellite measurements of ice loss. However, obtaining accurate ages from terrestrial geomorphic and sedimentary indicators of the most recent Neoglacial advance in Antarctica has been hampered by the lack of historical records and the difficulty of dating materials in Antarctica. Here we use a new approach to dating flights of raised beaches in the South Shetland Islands of the northern Antarctic Peninsula to bracket the age of a Neoglacial advance that occurred between 1500 and 1700 AD, broadly synchronous with compilations for the timing of the Little Ice Age in the northern hemisphere. Our approach is based on optically stimulated luminescence of the underside of buried cobbles to obtain the age of beaches previously shown to have been deposited immediately inside and outside the moraines of the most recent Neoglacial advance. In addition, these beaches mark the timing of an apparent change in the rate of isostatic rebound thought to be in response to the same glacial advance within the South Shetland Islands. We use a Maxwell viscoelastic model of glacial-isostatic adjustment (GIA) to determine whether the rates of uplift calculated from the raised beaches are realistic given the limited constraints on the ice advance during this most recent Neoglacial advance. Our rebound model suggests that the subsequent melting of an additional 16-22% increase in the volume of ice within the South Shetland Islands would result in a subsequent uplift rate of 12.5 mm/yr that lasted until 1840 AD resulting in a cumulative uplift of 2.5 m. This uplift rate and magnitude are in close agreement with observed rates and magnitudes calculated from the raised beaches since the most recent Neoglacial advance along the South Shetland Islands and falls within the range of uplift rates from similar settings such as Alaska.