Chlorophyll a concentration and zooplankton abundance and biomass below melting sea ice in the Amundsen Gulf, supplement to: Hop, Haakon; Mundy, Christopher John; Gosselin, Michel; Rossnagel, Andrea L; Barber, David G (2011): Zooplankton boom and ice amphipod bust below melting sea ice in the Amundsen Gulf, Arctic Canada. Polar Biology, 34(12), 1947-1958

Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic-pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below...

Full description

Bibliographic Details
Main Authors: Hop, Haakon, Mundy, Christopher John, Gosselin, Michel, Rossnagel, Andrea L, Barber, David G
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2011
Subjects:
IPY
Online Access:https://dx.doi.org/10.1594/pangaea.811354
https://doi.pangaea.de/10.1594/PANGAEA.811354
Description
Summary:Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic-pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind./m**3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5-2.3 mg Chl-a/m**3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind./m**2) and wet biomass (<0.2 g/m**2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost. : Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150