Paleomagneitc of early Cretaceous sediments from the western Central Atlantic, supplement to: Ogg, James G (1987): Early Cretaceous magnetic polarity time scale and the magnetostratigraphy of Deep Sea Drilling Project Sites 603 and 534, western Central Atlantic. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 849-879

Drilling at Sites 534 and 603 of the Deep Sea Drilling Project recovered thick sections of Berriasian through Aptian white limestones to dark gray marls, interbedded with claystone and clastic turbidites. Progressive thermal demagnetization removed a normal-polarity overprint carried by goethite and...

Full description

Bibliographic Details
Main Author: Ogg, James G
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 1987
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.796274
https://doi.pangaea.de/10.1594/PANGAEA.796274
Description
Summary:Drilling at Sites 534 and 603 of the Deep Sea Drilling Project recovered thick sections of Berriasian through Aptian white limestones to dark gray marls, interbedded with claystone and clastic turbidites. Progressive thermal demagnetization removed a normal-polarity overprint carried by goethite and/or pyrrhotite. The resulting characteristic magnetization is carried predominantly by magnetite. Directions and reliability of characteristic magnetization of each sample were computed by using least squares line-fits of magnetization vectors. The corrected true mean inclinations of the sites suggest that the western North Atlantic underwent approximately 6° of steady southward motion between the Berriasian and Aptian stages. The patterns of magnetic polarity of the two sites, when plotted on stratigraphic columns of the pelagic sediments without turbidite beds, display a fairly consistent magnetostratigraphy through most of the Hauterivian-Barremian interval, using dinoflagellate and nannofossil events and facies changes in pelagic sediment as controls on the correlations. The composite magnetostratigraphy appears to include most of the features of the M-sequence block model of magnetic anomalies from Ml to Ml ON (Barremian-Hauterivian) and from M16 to M23 (Berriasian-Tithonian). The Valanginian magnetostratigraphy of the sites does not exhibit reversed polarity intervals corresponding to Ml 1 to M13 of the M-sequence model; this may be the result of poor magnetization, of a major unrecognized hiatus in the early to middle Valanginian in the western North Atlantic, or of an error in the standard block model. Based on these tentative polarity-zone correlations, the Hauterivian/Barremian boundary occurs in or near the reversed-polarity Chron M7 or M5, depending upon whether the dinoflagellate or nannofossil zonation, respectively, is used; the Valanginian/Hauterivian boundary, as defined by the dinoflagellate zonation, is near reversed-polarity Chron M10N.