(Table T2) Spectral reflectance record for ODP Site 188-1165, supplement to: Rebesco, Michele (2003): Data report: Numerical evaluation of diffuse spectral reflectance data and correlation with core photos, ODP Site 1165, Wild Drift, Cooperation Sea, Antarctica. In: Cooper, AK; O'Brien, PE; Richter, C (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 188, 1-27

Two main alternating facies were observed at Ocean Drilling Program (ODP) Site 1165, drilled in 3357 m water depth into the Wild Drift (Cooperation Sea, Antarctica): a dark gray, laminated, terrigenous one (interpreted as muddy contourites) and a greenish, homogeneous, biogenic and coarse fraction-b...

Full description

Bibliographic Details
Main Author: Rebesco, Michele
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2012
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.780575
https://doi.pangaea.de/10.1594/PANGAEA.780575
Description
Summary:Two main alternating facies were observed at Ocean Drilling Program (ODP) Site 1165, drilled in 3357 m water depth into the Wild Drift (Cooperation Sea, Antarctica): a dark gray, laminated, terrigenous one (interpreted as muddy contourites) and a greenish, homogeneous, biogenic and coarse fraction-bearing one (interpreted as hemipelagic deposits with ice rafted debris [IRD]). These two cyclically alternating facies reflect orbitally driven changes (Milankovitch periodicities) recorded in spectral reflectance, bulk density, and magnetic susceptibility data and opal content changes. Superimposed on these short-term variations, significant uphole changes in average sedimentation rates, total clay content, IRD amount, and mineral composition were interpreted to represent the long-term lower to upper Miocene transition from a temperate climate to a cold-climate glaciation. The analysis of the short-term variations (interpreted to reflect ice sheet expansions controlled by 41-k.y. insolation changes) requires a quite closely spaced sampled record like that provided by the archive multisensor track. Among those, cycles are best described by spectral reflectance data and, in particular, by a parameter calculated as the ratio of the reflectivity in the green color band and the average reflectivity (gray). In this data report a numerical evaluation of spectral reflectance data was performed and substantiated by correlation with core photos to provide an objective description of the color variations within Site 1165 sediments. The resulting color description provides a reference to categorize the available samples in terms of facies and, hence, a framework for further analyses. Moreover, a link between visually described features and numerical series suitable for spectral analyses is provided.