Seawater carbonate chemistry and biological processes of sand dollars Dendraster excentricus during experiments, 2011, supplement to: Chan, Kit Yu Karen; Grünbaum, Daniel; O'Donnell, Michael J (2011): Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. Journal of Experimental Biology, 214(22), 3857-3867

Reduction in global ocean pH due to the uptake of increased atmospheric CO2 is expected to negatively affect calcifying organisms, including the planktonic larval stages of many marine invertebrates. Planktonic larvae play crucial roles in the benthic-pelagic life cycle of marine organisms by connec...

Full description

Bibliographic Details
Main Authors: Chan, Kit Yu Karen, Grünbaum, Daniel, O'Donnell, Michael J
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2011
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.771908
https://doi.pangaea.de/10.1594/PANGAEA.771908
Description
Summary:Reduction in global ocean pH due to the uptake of increased atmospheric CO2 is expected to negatively affect calcifying organisms, including the planktonic larval stages of many marine invertebrates. Planktonic larvae play crucial roles in the benthic-pelagic life cycle of marine organisms by connecting and sustaining existing populations and colonizing new habitats. Calcified larvae are typically denser than seawater and rely on swimming to navigate vertically structured water columns. Larval sand dollars Dendraster excentricus have calcified skeletal rods supporting their bodies, and propel themselves with ciliated bands looped around projections called arms. Ciliated bands are also used in food capture, and filtration rate is correlated with band length. As a result, swimming and feeding performance are highly sensitive to morphological changes. When reared at an elevated PCO2 level (1000 ppm), larval sand dollars developed significantly narrower bodies at four and six-arm stages. Morphological changes also varied between four observed maternal lineages, suggesting within-population variation in sensitivity to changes in PCO2 level. Despite these morphological changes, PCO2 concentration alone had no significant effect on swimming speeds. However, acidified larvae had significantly smaller larval stomachs and bodies, suggesting reduced feeding performance. Adjustments to larval morphologies in response to ocean acidification may prioritize swimming over feeding, implying that negative consequences of ocean acidification are carried over to later developmental stages. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).