Seawater carbonate chemistry and biological processes of bivalve shellfish Mercenaria mercenaria and Argopecten irradians during experiments, 2011, supplement to: Talmage, Stephanie C; Gobler, Christopher J (2010): Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17246-17251

The combustion of fossil fuels has enriched levels of CO2 in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO3shells, the effects of ocean acidification since the dawn o...

Full description

Bibliographic Details
Main Authors: Talmage, Stephanie C, Gobler, Christopher J
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2010
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.771297
https://doi.pangaea.de/10.1594/PANGAEA.771297
Description
Summary:The combustion of fossil fuels has enriched levels of CO2 in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO3shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO2concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenariaand Argopecten irradians). Larvae grown under near preindustrial CO2concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO2 levels. Bivalves grown under near preindustrial CO2 levels displayed thicker, more robust shells than individuals grown at present CO2 concentrations, whereas bivalves exposed to CO2 levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).