Seawater carbonate chemistry and calcification of Lophelia pertusa during experiments, 2009, supplement to: Maier, Cornelia; Hegeman, Jan; Weinbauer, Markus G; Gattuso, Jean-Pierre (2009): Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences, 6(8), 1671-1680

The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertus...

Full description

Bibliographic Details
Main Authors: Maier, Cornelia, Hegeman, Jan, Weinbauer, Markus G, Gattuso, Jean-Pierre
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2009
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.767577
https://doi.pangaea.de/10.1594/PANGAEA.767577
Description
Summary:The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).