Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus, seawater carbonate chemistry and biological processes, supplement to: Moulin, Laure; Catarino, Ana Isabel; Claessens, Thomas; Dubois, Philippe (2011): Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin, 62(1), 48-54

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH dec...

Full description

Bibliographic Details
Main Authors: Moulin, Laure, Catarino, Ana Isabel, Claessens, Thomas, Dubois, Philippe
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2011
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.763909
https://doi.pangaea.de/10.1594/PANGAEA.763909
Description
Summary:The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.