Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891
CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA - Data Publisher for Earth & Environmental Science
2010
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.763336 https://doi.pangaea.de/10.1594/PANGAEA.763336 |
id |
ftdatacite:10.1594/pangaea.763336 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
DataCite Metadata Store (German National Library of Science and Technology) |
op_collection_id |
ftdatacite |
language |
English |
topic |
Acid-base regulation Animalia Benthic animals Benthos Bottles or small containers/Aquaria <20 L Calcification/Dissolution Coast and continental shelf Growth/Morphology Laboratory experiment Mollusca Mytilus edulis North Atlantic Single species Temperate Identification Experimental treatment Salinity Temperature, water pH pH, standard deviation Alkalinity, total Alkalinity, total, standard deviation Carbon, inorganic, dissolved Carbon, inorganic, dissolved, standard deviation Carbon dioxide, partial pressure Carbon dioxide, partial pressure, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Calcite saturation state Calcite saturation state, standard deviation Aragonite saturation state Aragonite saturation state, standard deviation Mytilus edulis, weight, shell Mytilus edulis, shell length Mytilus edulis, weight, dry Replicates Mytilus edulis, area, dissolved Mytilus edulis, dissolution severity Mytilus edulis, haemolymph, pH Mytilus edulis, haemolymph, total dissolved inorganic carbon Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid Mytilus edulis, haemolymph, partial pressure of carbon dioxide Mytilus edulis, haemolymph, bicarbonate ion Mytilus edulis, haemolymph, carbonate ion Mytilus edulis, haemolymph, sodium ion Mytilus edulis, haemolymph, potassium ion Mytilus edulis, haemolymph, magnesium ion Mytilus edulis, haemolymph, calcium ion Mytilus edulis, extrapallial fluid pH Mytilus edulis, extrapallial fluid total carbon Mytilus edulis, extrapallial fluid pK Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide Mytilus edulis, extrapallial fluid bicarbonate Mytilus edulis, extrapallial fluid carbonate ion Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion WTW 340i pH-analyzer and WTW SenTix 81-electrode Potentiometric titration, VINDTA marianda SOMMA autoanalyzer Calculated using CO2SYS Scanning electron microscope SEM Automated CO2 analyzer CIBA-Corning 965, UK Calculated using seacarb after Nisumaa et al. 2010 Biological Impacts of Ocean Acidification BIOACID European network of excellence for Ocean Ecosystems Analysis EUR-OCEANS European Project on Ocean Acidification EPOCA Ocean Acidification International Coordination Centre OA-ICC |
spellingShingle |
Acid-base regulation Animalia Benthic animals Benthos Bottles or small containers/Aquaria <20 L Calcification/Dissolution Coast and continental shelf Growth/Morphology Laboratory experiment Mollusca Mytilus edulis North Atlantic Single species Temperate Identification Experimental treatment Salinity Temperature, water pH pH, standard deviation Alkalinity, total Alkalinity, total, standard deviation Carbon, inorganic, dissolved Carbon, inorganic, dissolved, standard deviation Carbon dioxide, partial pressure Carbon dioxide, partial pressure, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Calcite saturation state Calcite saturation state, standard deviation Aragonite saturation state Aragonite saturation state, standard deviation Mytilus edulis, weight, shell Mytilus edulis, shell length Mytilus edulis, weight, dry Replicates Mytilus edulis, area, dissolved Mytilus edulis, dissolution severity Mytilus edulis, haemolymph, pH Mytilus edulis, haemolymph, total dissolved inorganic carbon Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid Mytilus edulis, haemolymph, partial pressure of carbon dioxide Mytilus edulis, haemolymph, bicarbonate ion Mytilus edulis, haemolymph, carbonate ion Mytilus edulis, haemolymph, sodium ion Mytilus edulis, haemolymph, potassium ion Mytilus edulis, haemolymph, magnesium ion Mytilus edulis, haemolymph, calcium ion Mytilus edulis, extrapallial fluid pH Mytilus edulis, extrapallial fluid total carbon Mytilus edulis, extrapallial fluid pK Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide Mytilus edulis, extrapallial fluid bicarbonate Mytilus edulis, extrapallial fluid carbonate ion Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion WTW 340i pH-analyzer and WTW SenTix 81-electrode Potentiometric titration, VINDTA marianda SOMMA autoanalyzer Calculated using CO2SYS Scanning electron microscope SEM Automated CO2 analyzer CIBA-Corning 965, UK Calculated using seacarb after Nisumaa et al. 2010 Biological Impacts of Ocean Acidification BIOACID European network of excellence for Ocean Ecosystems Analysis EUR-OCEANS European Project on Ocean Acidification EPOCA Ocean Acidification International Coordination Centre OA-ICC Thomsen, Jörn Gutowska, Magdalena A Saphörster, J Heinemann, Agnes Trübenbach, Katja Fietzke, Jan Hiebenthal, Claas Eisenhauer, Anton Körtzinger, Arne Wahl, Martin Melzner, Frank Thomsen, Elsebeth Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 |
topic_facet |
Acid-base regulation Animalia Benthic animals Benthos Bottles or small containers/Aquaria <20 L Calcification/Dissolution Coast and continental shelf Growth/Morphology Laboratory experiment Mollusca Mytilus edulis North Atlantic Single species Temperate Identification Experimental treatment Salinity Temperature, water pH pH, standard deviation Alkalinity, total Alkalinity, total, standard deviation Carbon, inorganic, dissolved Carbon, inorganic, dissolved, standard deviation Carbon dioxide, partial pressure Carbon dioxide, partial pressure, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Calcite saturation state Calcite saturation state, standard deviation Aragonite saturation state Aragonite saturation state, standard deviation Mytilus edulis, weight, shell Mytilus edulis, shell length Mytilus edulis, weight, dry Replicates Mytilus edulis, area, dissolved Mytilus edulis, dissolution severity Mytilus edulis, haemolymph, pH Mytilus edulis, haemolymph, total dissolved inorganic carbon Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid Mytilus edulis, haemolymph, partial pressure of carbon dioxide Mytilus edulis, haemolymph, bicarbonate ion Mytilus edulis, haemolymph, carbonate ion Mytilus edulis, haemolymph, sodium ion Mytilus edulis, haemolymph, potassium ion Mytilus edulis, haemolymph, magnesium ion Mytilus edulis, haemolymph, calcium ion Mytilus edulis, extrapallial fluid pH Mytilus edulis, extrapallial fluid total carbon Mytilus edulis, extrapallial fluid pK Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide Mytilus edulis, extrapallial fluid bicarbonate Mytilus edulis, extrapallial fluid carbonate ion Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion WTW 340i pH-analyzer and WTW SenTix 81-electrode Potentiometric titration, VINDTA marianda SOMMA autoanalyzer Calculated using CO2SYS Scanning electron microscope SEM Automated CO2 analyzer CIBA-Corning 965, UK Calculated using seacarb after Nisumaa et al. 2010 Biological Impacts of Ocean Acidification BIOACID European network of excellence for Ocean Ecosystems Analysis EUR-OCEANS European Project on Ocean Acidification EPOCA Ocean Acidification International Coordination Centre OA-ICC |
description |
CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 µatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). |
format |
Dataset |
author |
Thomsen, Jörn Gutowska, Magdalena A Saphörster, J Heinemann, Agnes Trübenbach, Katja Fietzke, Jan Hiebenthal, Claas Eisenhauer, Anton Körtzinger, Arne Wahl, Martin Melzner, Frank Thomsen, Elsebeth |
author_facet |
Thomsen, Jörn Gutowska, Magdalena A Saphörster, J Heinemann, Agnes Trübenbach, Katja Fietzke, Jan Hiebenthal, Claas Eisenhauer, Anton Körtzinger, Arne Wahl, Martin Melzner, Frank Thomsen, Elsebeth |
author_sort |
Thomsen, Jörn |
title |
Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 |
title_short |
Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 |
title_full |
Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 |
title_fullStr |
Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 |
title_full_unstemmed |
Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 |
title_sort |
seawater carbonate chemistry and mytilus edulis biological processes during experiments, 2010, supplement to: thomsen, jörn; gutowska, magdalena a; saphörster, j; heinemann, agnes; trübenbach, katja; fietzke, jan; hiebenthal, claas; eisenhauer, anton; körtzinger, arne; wahl, martin; melzner, frank (2010): calcifying invertebrates succeed in a naturally co2-rich coastal habitat but are threatened by high levels of future acidification. biogeosciences, 7(11), 3879-3891 |
publisher |
PANGAEA - Data Publisher for Earth & Environmental Science |
publishDate |
2010 |
url |
https://dx.doi.org/10.1594/pangaea.763336 https://doi.pangaea.de/10.1594/PANGAEA.763336 |
long_lat |
ENVELOPE(-66.232,-66.232,-65.794,-65.794) |
geographic |
Thomsen |
geographic_facet |
Thomsen |
genre |
North Atlantic Ocean acidification |
genre_facet |
North Atlantic Ocean acidification |
op_relation |
https://dx.doi.org/10.5194/bg-7-3879-2010 |
op_rights |
Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.1594/pangaea.763336 https://doi.org/10.5194/bg-7-3879-2010 |
_version_ |
1766137481784197120 |
spelling |
ftdatacite:10.1594/pangaea.763336 2023-05-15T17:37:30+02:00 Seawater carbonate chemistry and Mytilus edulis biological processes during experiments, 2010, supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891 Thomsen, Jörn Gutowska, Magdalena A Saphörster, J Heinemann, Agnes Trübenbach, Katja Fietzke, Jan Hiebenthal, Claas Eisenhauer, Anton Körtzinger, Arne Wahl, Martin Melzner, Frank Thomsen, Elsebeth 2010 text/tab-separated-values https://dx.doi.org/10.1594/pangaea.763336 https://doi.pangaea.de/10.1594/PANGAEA.763336 en eng PANGAEA - Data Publisher for Earth & Environmental Science https://dx.doi.org/10.5194/bg-7-3879-2010 Creative Commons Attribution 3.0 Unported https://creativecommons.org/licenses/by/3.0/legalcode cc-by-3.0 CC-BY Acid-base regulation Animalia Benthic animals Benthos Bottles or small containers/Aquaria <20 L Calcification/Dissolution Coast and continental shelf Growth/Morphology Laboratory experiment Mollusca Mytilus edulis North Atlantic Single species Temperate Identification Experimental treatment Salinity Temperature, water pH pH, standard deviation Alkalinity, total Alkalinity, total, standard deviation Carbon, inorganic, dissolved Carbon, inorganic, dissolved, standard deviation Carbon dioxide, partial pressure Carbon dioxide, partial pressure, standard deviation Partial pressure of carbon dioxide water at sea surface temperature wet air Calcite saturation state Calcite saturation state, standard deviation Aragonite saturation state Aragonite saturation state, standard deviation Mytilus edulis, weight, shell Mytilus edulis, shell length Mytilus edulis, weight, dry Replicates Mytilus edulis, area, dissolved Mytilus edulis, dissolution severity Mytilus edulis, haemolymph, pH Mytilus edulis, haemolymph, total dissolved inorganic carbon Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid Mytilus edulis, haemolymph, partial pressure of carbon dioxide Mytilus edulis, haemolymph, bicarbonate ion Mytilus edulis, haemolymph, carbonate ion Mytilus edulis, haemolymph, sodium ion Mytilus edulis, haemolymph, potassium ion Mytilus edulis, haemolymph, magnesium ion Mytilus edulis, haemolymph, calcium ion Mytilus edulis, extrapallial fluid pH Mytilus edulis, extrapallial fluid total carbon Mytilus edulis, extrapallial fluid pK Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide Mytilus edulis, extrapallial fluid bicarbonate Mytilus edulis, extrapallial fluid carbonate ion Carbonate system computation flag Carbon dioxide Fugacity of carbon dioxide water at sea surface temperature wet air Bicarbonate ion Carbonate ion WTW 340i pH-analyzer and WTW SenTix 81-electrode Potentiometric titration, VINDTA marianda SOMMA autoanalyzer Calculated using CO2SYS Scanning electron microscope SEM Automated CO2 analyzer CIBA-Corning 965, UK Calculated using seacarb after Nisumaa et al. 2010 Biological Impacts of Ocean Acidification BIOACID European network of excellence for Ocean Ecosystems Analysis EUR-OCEANS European Project on Ocean Acidification EPOCA Ocean Acidification International Coordination Centre OA-ICC Dataset dataset Supplementary Dataset 2010 ftdatacite https://doi.org/10.1594/pangaea.763336 https://doi.org/10.5194/bg-7-3879-2010 2022-02-09T13:11:14Z CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 µatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). Dataset North Atlantic Ocean acidification DataCite Metadata Store (German National Library of Science and Technology) Thomsen ENVELOPE(-66.232,-66.232,-65.794,-65.794) |