Sedimentological and geophysical investigation of sediment cores from the Amundsen Sea ...
Ice loss from the marine-based, potentially unstable West Antarctic Ice Sheet (WAIS) contributes to current sea-level rise and may raise sea level by up to 3.3 to 5 meters in the future. Over the past few decades, glaciers draining the WAIS into the Amundsen Sea Embayment (ASE) have shown accelerate...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
PANGAEA
2013
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.751493 https://doi.pangaea.de/10.1594/PANGAEA.751493 |
Summary: | Ice loss from the marine-based, potentially unstable West Antarctic Ice Sheet (WAIS) contributes to current sea-level rise and may raise sea level by up to 3.3 to 5 meters in the future. Over the past few decades, glaciers draining the WAIS into the Amundsen Sea Embayment (ASE) have shown accelerated ice flow, rapid thinning and grounding-line retreat. However, the long-term context of this ice-sheet retreat is poorly constrained, limiting our ability to accurately predict future WAIS behaviour. Here we present a new chronology for WAIS retreat from the inner continental shelf of the eastern ASE based on radiocarbon dates from three marine sediment cores. The ages document a retreat of the grounding line to within ~93 km of its modern position before 11.7±0.7 kyr BP (thousand years before present). This early deglaciation is consistent with ages for grounding-line retreat from the western ASE. Our new data demonstrate that, other than in the Ross Sea, WAIS retreat in the ASE has not continued progressively ... : Supplement to: Hillenbrand, Claus-Dieter; Kuhn, Gerhard; Smith, James A; Gohl, Karsten; Graham, Alastair G C; Larter, Robert D; Klages, Johann Philipp; Downey, Rachel; Moreton, Steven Grahame; Forwick, Matthias; Vaughan, David G (2013): Grounding-line retreat of the West Antarctic Ice Sheet from inner Pine Island Bay. Geology, 41(1), 35-38 ... |
---|