Carbonate system data on the Molokai reef flat ...

The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3**2- to...

Full description

Bibliographic Details
Main Authors: Yates, Kimberly Kaye, Halley, Roberet B
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2006
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.743388
https://doi.pangaea.de/10.1594/PANGAEA.743388
Description
Summary:The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3**2- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3**2- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3/m**2/h and dissolution ranged from -0.05 to -3.3 mmol CaCO3/m**2/h. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3**2- at which rates of calcification and ... : Supplement to: Yates, Kimberly Kaye; Halley, Roberet B (2006): CO3**2- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences, 3, 357-369 ...