Hydrogen, carbon, and oxygen isotope ratios of interstitial fluides of ODP Leg 104 holes, supplement to: Whiticar, Michael J; Faber, Eckhard (1989): Carbon, hydrogen, and oxygen isotope distribution in the interstitial fluids of ODP Leg 104, holes 642B, 642D, 643A, and 644A, Vøring Plateau, Norwegian Sea. In: Eldholm, O; Thiede, J; Taylor, E; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 104, 285-290

Carbon, hydrogen, and oxygen isotope ratios determined on 32 squeezed interstitial fluid samples show remarkable variations with depth. For the most part these variations are related to diagenetic and alteration reactions taking place in the sediments, and in the underlying basalts.delta13C SumCO2 d...

Full description

Bibliographic Details
Main Authors: Whiticar, Michael J, Faber, Eckhard
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 1989
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.736443
https://doi.pangaea.de/10.1594/PANGAEA.736443
Description
Summary:Carbon, hydrogen, and oxygen isotope ratios determined on 32 squeezed interstitial fluid samples show remarkable variations with depth. For the most part these variations are related to diagenetic and alteration reactions taking place in the sediments, and in the underlying basalts.delta13C SumCO2 depth distributions at Sites 642 and 643 are the result of mixing of original SumCO2 of the paleo bottom water with SumCO2 released by remineralization of organic matter. At Site 644, where sulfate exhaustion occurs, the processes of methanogenesis by CO2 reduction and anaerobic methanotrophy strongly influence the delta13C SumCO2 distribution.Hydrogen and oxygen isotopes roughly covary, and become enriched in 16O and1H with depth. This effect is most pronounced at Sites 642 and 643, possibly due to the influence of the directly underlying basalts. Isotope depletions at Site 644 are much lower, corresponding to the greater sediment depth to basement. The alternative, that the O, H isotope shifts are due primarily to autochthonous diagenetic and exchange reactions, is not supported by the data available.