Oxygen and carbon isotope data for benthic foraminifera from DSDP Site 94-608 and ODP Site 208-1264, supplement to: Smart, Christopher W; Thomas, Ellen (2006): The enigma of early Miocene biserial planktic foraminifera. Geology, 34(12), 1041-1044

Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Boli...

Full description

Bibliographic Details
Main Authors: Smart, Christopher W, Thomas, Ellen
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2006
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.713696
https://doi.pangaea.de/10.1594/PANGAEA.713696
Description
Summary:Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Bolivina, but their high abundances in sediments without evidence for dysoxia could not be explained. Apertural morphology, accumulation rates, and isotopic composition show that they were planktic (genus Streptochilus). Living Streptochilus are common in productive waters with intermittent upwelling. The widespread early Miocene high Streptochilus abundances may reflect vigorous but intermittent upwelling, inducing high phytoplankton growth rates. However, export production (estimated from benthic foraminiferal accumulation rates) was low, possibly due to high regeneration rates in a deep thermocline. The upwelled waters may have been an analog to Subantarctic Mode Waters, carrying nutrients into the eastern Atlantic and western Indian Oceans as the result of the initiation of a deep-reaching Antarctic Circumpolar Current, active Agulhas Leakage, and vigorous vertical mixing in the Southern Oceans.