Benthic foraminiferal number of specimens in Cretaceous samples of various DSDP and ODP Sites (Table 2), supplement to: Widmark, Joen G V (1995): Multiple deep-water sources and trophic regimes in the latest Cretaceous deep sea: evidence from benthic foraminifera. Marine Micropaleontology, 26(1-4), 361-384

Benthic foraminifera from 24 DSDP/ODP sites were investigated to assess their global horizontal and vertical distribution in the deep-sea environment at the end of the Cretaceous period. The samples analyzed are from the late Maastrichtian and within the planktic foraminiferal Abathomphus mayaroensi...

Full description

Bibliographic Details
Main Author: Widmark, Joen G V
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 1995
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.691287
https://doi.pangaea.de/10.1594/PANGAEA.691287
Description
Summary:Benthic foraminifera from 24 DSDP/ODP sites were investigated to assess their global horizontal and vertical distribution in the deep-sea environment at the end of the Cretaceous period. The samples analyzed are from the late Maastrichtian and within the planktic foraminiferal Abathomphus mayaroensis Zone from a wide range of oceans and paleolatitudes, including the low-latitude Sites 10 and 384 (Atlantic Ocean), 47, 171, 305, and 465 (Pacific Ocean), the mid-latitude Sites 20, 111, 356, 363, 516, 525, 527, 548, and 605 (Atlantic Ocean), 216, 217, and 758 (Indian Ocean), and the high-latitude Sites 208 (Pacific Ocean), 689,698,700,738 and 750 (Southern Ocean).Correspondence analysis, based on the 75 most common taxa, shows a clear biogeographic trend along the first correspondence axis by arranging the sites in paleolatitudinal order. The assemblages from the Tethyan Realm (i.e., low latitudes) are marked by abundant heavily calcified buliminids (such as Bulimina incisa, B. trinitatensis, B. velascoensis, and Reussella szajnochae) and Aragonia spp., whereas high-latitude faunas are characterized by abundant Alabamina creta, Gyroidinoides quadratus, and Pullenia coryelli.The results indicate that the faunas at low and high latitudes, respectively, were influenced by quite different environmental conditions. This is based on the much higher abundance of infaunal morphotypes at low and mid latitudes compared to high latitudes, suggesting that the biogeographic trend found in the data set coincides with the trophic regime at the various sites. The results also provide support for the hypothesis that postulates two simultaneous sources and mechanisms for deep-water formation during the Late Cretaceous, including warm, saline deep water produced by evaporation at low (equatorial) latitudes in contrast to the formation of cold deep waters at high (southern) latitudes.