Plio-Pleistocene magnetic polarity stratigraphies of ODP Leg 177 Sites from the South Atlantic, supplement to: Channell, James E T; Stoner, Joseph S (2002): Plio-Pleistocene magnetic polarity stratigraphies and diagenetic magnetite dissolution at ODP Leg 177 Sites (1089, 1091, 1093 and 1094). Marine Micropaleontology, 45(3-4), 269-290

Magnetic polarity stratigraphies from ODP Leg 177 'high resolution' sites indicate Brunhes sedimentation rates in the 12-25 cm/kyr range, with a trend of decreasing sedimentation rates with increasing age. Magnetite is the principal remanence-carrying mineral. Downcore alteration of magnet...

Full description

Bibliographic Details
Main Authors: Channell, James E T, Stoner, Joseph S
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2002
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.678516
https://doi.pangaea.de/10.1594/PANGAEA.678516
Description
Summary:Magnetic polarity stratigraphies from ODP Leg 177 'high resolution' sites indicate Brunhes sedimentation rates in the 12-25 cm/kyr range, with a trend of decreasing sedimentation rates with increasing age. Magnetite is the principal remanence-carrying mineral. Downcore alteration of magnetite and authigenic growth of iron sulfides introduces a high coercivity diagenetic remanence carrier (pyrrhotite). The change in pore water sulfate with depth in the sediment tends to be in step with the decrease in magnetization intensity, indicating the link between sulfate reduction and magnetite dissolution. Shipboard pass-through magnetometer data are generally very noisy due to a combination of weak magnetization intensities, drilling-related core deformation, and the influence of authigenic iron sulfides. Post-cruise progressive demagnetization of discrete samples aids the magnetostratigraphic interpretation, as these measurements are less influenced by low magnetization intensities and drilling-related deformation. The magnetostratigraphic interpretations provide much-needed calibration for biostratigraphic events in the high latitude southern oceans. Apart from the ODP Hole 745B (Kerguelen Plateau), published Plio-Pleistocene magnetostratigraphies from ODP sites in the Southern Ocean are poorly constrained. For this reason, we compare interpolated ages of 11 radiolarian events and one diatom event that occur at Hole 745B and Leg 177 sites.