Diversity and faunal composition of benthic foraminifera in Hole 44-390A on the Blake Nose Plateau, supplement to: Friedrich, Oliver; Hemleben, Christoph (2007): Early Maastrichtian benthic foraminiferal assemblages from the western North Atlantic (Blake Nose) and their relation to paleoenvironmental changes. Marine Micropaleontology, 62(1), 31-44

Benthic foraminiferal assemblages are a widespread tool to understand changes in organic matter flux and bottom-water oxygenation and their relation to paleoceanographic changes in the Upper Cretaceous oceans. In this study, assemblage data (diversity, total number, and number per species and gram)...

Full description

Bibliographic Details
Main Authors: Friedrich, Oliver, Hemleben, Christoph
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2007
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.472293
https://doi.pangaea.de/10.1594/PANGAEA.472293
Description
Summary:Benthic foraminiferal assemblages are a widespread tool to understand changes in organic matter flux and bottom-water oxygenation and their relation to paleoceanographic changes in the Upper Cretaceous oceans. In this study, assemblage data (diversity, total number, and number per species and gram) from Deep Sea Drilling Project (DSDP) Site 390 (Blake Nose, western North Atlantic) were processed for the lower Maastrichtian (Globotruncana falsostuarti – Gansserina gansseri Planktic Foraminiferal Zone). These data document significant changes in nutrient flux to the sea floor as well as bottom-water oxygenation during this time interval. Parallel to the observed changes in the benthic foraminiferal assemblages the number of inoceramid shells decreases, reflecting also a significant increase in bottom-water oxygenation. We speculate, that these data could reflect the onset of a shift from warmer low-latitude to cooler high-latitude deep-water sources. This speculation will predate the major reorganization of the oceanic circulation resulting in a circulation mode similar to today at the Early/Late Maastrichtian boundary by ~1 Ma and therefore improves our understanding of Late Cretaceous paleoceanography. : Contribution of the Kühlokrei Project