Reactive transport modeling of waste rock weathering in permafrost environments ...

Developing an understanding of the thermo-hydrological-chemical (THC) behavior of waste rock piles (WRPs) at mine sites in cold-region climates is important for anticipating contaminated drainage. In cold-region climates, freeze-thaw cycles and the possible development of permafrost within WRPs add...

Full description

Bibliographic Details
Main Author: Yi, Xueying
Format: Text
Language:English
Published: University of British Columbia 2021
Subjects:
Online Access:https://dx.doi.org/10.14288/1.0395792
https://doi.library.ubc.ca/10.14288/1.0395792
Description
Summary:Developing an understanding of the thermo-hydrological-chemical (THC) behavior of waste rock piles (WRPs) at mine sites in cold-region climates is important for anticipating contaminated drainage. In cold-region climates, freeze-thaw cycles and the possible development of permafrost within WRPs add to the complexity of the coupled processes occurring in WRPs but also provide opportunity for reclamation strategies, in particular through the placement of thermal covers to isolate the waste rock from weathering. Reactive transport modeling (RTM) has proven a versatile tool that can help characterize the coupled processes within mine waste. In this thesis, RTM code MIN3P-HPC has been enhanced to account for the effects of seasonal freeze-thaw cycles on the weathering behavior of WRPs with specific focus on the development of permafrost and drainage quality. The code was used to perform a sensitivity analysis for a hypothetical full-scale sulfide-bearing WRP to assess the influence of two key factors: climate ...