Type I error rates and power of robust chi-square difference tests in investigations of measurement invariance ...

A Monte Carlo simulation study was conducted to investigate Type I error rates and power of several corrections for non-normality to the normal theory chi-square difference test in the context of evaluating measurement invariance via Structural Equation Modeling (SEM). Studied statistics include: 1)...

Full description

Bibliographic Details
Main Author: Brace, Jordan
Format: Text
Language:English
Published: University of British Columbia 2015
Subjects:
DML
Online Access:https://dx.doi.org/10.14288/1.0166587
https://doi.library.ubc.ca/10.14288/1.0166587
Description
Summary:A Monte Carlo simulation study was conducted to investigate Type I error rates and power of several corrections for non-normality to the normal theory chi-square difference test in the context of evaluating measurement invariance via Structural Equation Modeling (SEM). Studied statistics include: 1) the uncorrected difference test, DML, 2) Satorra’s (2000) original computationally intensive correction, DS0, 3) Satorra and Bentler’s (2001) simplified correction, DSB1, 4) Satorra and Bentler’s (2010) strictly positive correction, DSB10, and 5) a hybrid procedure, DSBH (Asparouhov & Muthén, 2010), which is equal to DSB1 when DSB1 is positive, and DSB10 when DSB1 is negative. Multiple-group data were generated from confirmatory factor analytic models invariant on some but not all parameters. A series of six nested invariance models was fit to each generated dataset. Population parameter values had little influence on the relative performance of the scaled statistics, while level of invariance being tested ...