Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements

By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to...

Full description

Bibliographic Details
Published in:EPJ Web of Conferences
Main Authors: Marinou, Eleni, Amiridis, Vassilis, Ansmann, Albert, Nenes, Athanasios, Balis, Dimitris, Schrod, Jann, Binietoglou, Ioannis, Mamali, Dimitra, Engelmann, Ronny, Baars, Holger, Kottas, Michael, Proestakis, Emmanouil, Kokkalis, Panagiotis, Goloub, Philippe, Cvetkovic, Bojan, Nichovic, Slobodan, Mamouri, Rodanthi-Elisavet, Pikridas, Michael, Stavroulas, Iasonas, Keleshis, Christos, Sciare, Jean
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.1051/epjconf/201817605018
Description
Summary:By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.