РАДОН В ПОДЗЕМНЫХ ВОДАХ ПРИБАЙКАЛЬЯ И ЗАБАЙКАЛЬЯ: ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ВАРИАЦИИ

Целью исследований было провести систематизирование водопроявлений Прибайкалья и Забайкалья по содержанию радона (Q), а также установить закономерности изменчивости параметра Q в пространстве и времени. Фактическим материалом для анализа послужили собственные и заимствованные из литературных источни...

Full description

Bibliographic Details
Main Authors: СЕМИНСКИЙ КОНСТАНТИН ЖАНОВИЧ, СЕМИНСКИЙ АЛЕКСАНДР КОНСТАНТИНОВИЧ
Format: Text
Language:unknown
Published: Федеральное государственное бюджетное учреждение науки Институт земной коры Сибирского отделения Российской академии наук 2016
Subjects:
Online Access:http://cyberleninka.ru/article/n/radon-v-podzemnyh-vodah-pribaykalya-i-zabaykalya-prostranstvenno-vremennye-variatsii
http://cyberleninka.ru/article_covers/16932977.png
Description
Summary:Целью исследований было провести систематизирование водопроявлений Прибайкалья и Забайкалья по содержанию радона (Q), а также установить закономерности изменчивости параметра Q в пространстве и времени. Фактическим материалом для анализа послужили собственные и заимствованные из литературных источников оценки параметра Q во многих десятках водопроявлений региона (рис. 1), а также данные мониторинга восьми источников, принадлежащих к зоне влияния Ангарского разлома в Южном Приангарье (рис. 5). Измерения содержания радона в пробах воды проводились в соответствии со стандартной методикой при помощи радиометра РРА-01М-03, который характеризуется чувствительностью не менее 1.4∙10-4 с-∙Бк-1∙м3 и 30%-ным пределом допустимой относительной погрешности. Частотное распределение величин Q, измеренных в Прибайкалье и Забайкалье (рис. 2), а также анализ известных классификаций водопроявлений по радиоактивности позволили предложить единую для изученного региона систематику подземных вод в зависимости от содержания 222Rn (табл. 1). Для сейсмически активного Прибайкалья, где источники собственно радоновых вод с Q>185 Бк/л почти не встречаются, практическое значение имеет выделение трех первых групп со следующими пределами изменения параметра Q: группа I Q≤15 Бк/л, группа II 16≤Q≤99 Бк/л, группа III 100≤Q≤184 Бк/л. Большинство опробованных в Прибайкалье и Забайкалье источников относится к группам I и II, что позволяет рекомендовать объективно существующую величину 100 Бк/л в качестве уровня вмешательства при подготовке питьевой воды в регионе вместо предела в 60 Бк/кг, принятого сейчас в России. Для выявления пространственных закономерностей распространения в Прибайкалье и Забайкалье источников подземных вод, относящихся к разным группам по радиоактивности, проведено их опробование вдоль трансекта Баяндай-Мухоршибирь, пересекающего Байкальский рифт и другие крупные тектонические структуры изучаемого региона (рис. 4). В более крупном масштабе выполнен анализ изменчивости содержания радона в источниках подземных вод, приуроченных к отдельным участкам зон влияния Тункинского сброса (рис. 3), Приморского сброса, Ангарского сбросо-сдвига и других активных разломов изучаемого региона. В рамках пространственного аспекта проведенного исследования выделены вещественный и структурный факторы, определяющие радиоактивность подземных вод рассматриваемого региона. Подтверждены результаты предшествовавших исследований, свидетельствующие в целом о меньшем содержании радона в подземных водах Прибайкалья в сравнении с Забайкальем, где повышенная радиоактивность обусловлена широким распространением разнотипных гранитоидов. Фоновые концентрации радиоактивного газа в Прибайкалье соответствуют группе I, а в Забайкалье группе II. Граница между областями с разной радиоактивностью подземных вод смещена к юго-востоку от приосевых структур Байкальского рифта. В пределах тран-секта Баяндай Мухоршибирь она совпадает с известной границей между Забайкальской провинцией холодных углекислых вод и Байкальской провинцией азотных и метановых терм (рис. 4). Структурный фактор формирования эманационного поля выражается в повышении радиоактивности вод, приуроченных к разломам, где вследствие повышенной проницаемости и геодинамической активности интенсифицируется выход радона и/или создаются эманирующие коллекторы (рис. 3, 4). В Прибайкалье с разломами обычно связаны водопроявления группы II, а в Забайкалье источники подземных вод, принадлежащие к группам III-VI. Для выявления характера временных вариаций радиоактивности подземных вод были проанализированы длинные ряды (от 9 до 30 месяцев) мониторинга значений Q в восьми водопроявлениях из зоны Ангарского разлома в Южном Приангарье (рис. 5, 6). Согласно принятой классификации (табл. 1), три водопункта относились к близповерхностным источникам (группа I) и пять водопроявлений к источникам более глубоких разломных вод (группа II). Несмотря на отчетливые вариации радиоактивности, большую часть времени мониторинга изученные водопроявления не выходили за пороговые значения Q в пределах соответствующих групп. Периодические появления аномально высоких и низких содержаний радона оказались связанными с сезонными вариациями метеопараметров (рис. 6). Корреляционный анализ величины Q с атмосферным давлением (Р), влажностью (U) и температурой (Т) воздуха показал существование отчетливой зависимости содержания радона в подземных водах от величин Т и Р (табл. 3). Вслед за ведущим сезонным трендом температуры воздуха радиоактивность исследуемых вод увеличивается зимой и уменьшается летом (рис. 6). Параметр Т оказывает опосредованное влияние на величину Q через изменение температуры воды, вариации дебита водоисточников, промерзание верхнего слоя грунтов и другие процессы, параметрическое изучение которых представляет задачу дальнейших исследований по проблеме. Согласно данным мониторинга (табл. 3, рис. 6, А), содержание радона у близповерхностных водопроявлений из группы I может меняться на единицы и первые десятки, а для более глубоких (приразломных) водоисточников группы II на десятки беккерелей на литр. Как следствие, в непродолжительные периоды проявления экстремальных значений Q содержание радона в воде конкретного источника может повыситься или понизиться до значений, соответствующих смежной группе по радиоактивности. В работе охарактеризована радоновая активность подземных вод Прибайкалья и Забайкалья, причем особый акцент сделан на закономерностях пространственной и временной изменчивости содержания 222Rn в водопроявлениях с Q<185 Бк/л. Это нерадоновые воды, которые наиболее распространены в Прибайкалье, включая районы активного природопользования. Несмотря на низкое содержание 222Rn, они являются важным объектом дальнейших целенаправленных исследований по поиску лечебных вод, оценке качества питьевой воды и выявлению эманационных предвестников сильных землетрясений в регионе. This study aimed to provide a systematic overview of water sources in the Baikal region and Transbaikalia by the content of radon (Q) and establish regularities in variations of Q values in space and time. We collected and analyzed our evaluations of Q and the available published Q values for many dozens of water sources in the study area (Fig. 1), and reviewed the monitoring data of eight water sources that belong to the An-garsky fault impact zone in Southern Priangarie (Fig. 5). Radon content in water samples was measured in accordance with the standard procedure using a RRA-01M-03 radiometer (sensitivity of at least 1.4∙10-4 s-1∙Bq-1∙m3; maximum allowable relative error of 30 %). Based on the frequency patterns of Q values measured in the Baikal region and Transbaikalia (Fig. 2) and the analysis of the known classifications of the water sources by radioactivity, we propose a uniform regional classification of groundwaters with respect to 222Rn content (Table 1). In seismically active Baikal region, wherein water sources with Q>185 Bq/l are practically lacking, we distinguish the first three groups with the following Q ranges: Group I Q≤15 Bq/l, Group II 16≤Q≤99 Bq/l, and Group III 100≤Q≤184 Bq/l. Most of the water sources sampled in the Baikal region and Transbaikalia belong to Groups I and II, which allows us to recommend an objectively existing value of 100 Bq/l as the level of intervention in the preparation of drinking water in this region, instead of the limit of 60 Bq/l that is now approved in Russia. In order to identify the special patterns of groundwater sources in the Baikal region and Transbaikalia, which belong to different radioactivity groups, we sampled these sources along the transect from Bayanday to Muhorshibir, across the Baikal rift and other large regional tectonic structures (Fig. 4). On a larger scale, we analysed the radon content variability in the groundwater sources within the zones influenced by the Tunka normal fault (Fig. 3), Primorsky normal fault, Angarsky strike-slip fault with a normal component, and other active faults located in the study region. Within the framework of the spatial aspect, the material and structural factors determining the radioactivity of groundwaters in the study region are identified. Our data support the results of the previous studies showing a generally lower radon content in groundwaters in the Baikal region in comparison with those in Transbaikalia that is characterized by a higher radioactivity due to the abundant granitoids of different types. The background concentrations of the radioactive gas in the Baikal region correspond to Group I, and in those in Transbaikalia to Group II. The boundary between the regions with different levels of radioactivity of groundwaters is shifted southeastward from the central structures of the Baikal rift. Within the Bayanday-Muhorshibir transect, it coincides with the known boundary between the Transbaikalia province of cold carbonic acid waters and the Baikal province of nitrogen and methan terms (see Fig. 4). The structural factor of formation of the emanation field refers to an increase in radioactivity of water associated with the faults, whereat an increased permeability and higher geodynamic activity cause a more intensive radon emanation and/or the occurrence of emanating reservoirs (see Fig. 3, and 4). In the Baikal region, water sources of Group II are generally associated with faults, while in Transbaikalia, groundwater sources belonging to groups III and VI are typically related to faults. To clarify the pattern of temporal variations in groundwater radioactivity, we analysed long rows of the monitored Q values (9 to 30 months) in eight water sources in the Angarsky fault zone in Southern Priangarie (see Fig. 5, and 6). According to the adopted classification (see Table 1), three water sources belong to the near-surface sources (Group I), and there are five deeper near-fault water sources (Group II). Despite the distinct variations in radioactivity, the Q values recorded through most of the monitoring time do not exceed the threshold Q values for the respective groups. It appears that the observed periodic anomalously high and low contents of radon are due to seasonally variable meteorological parameters (see Fig. 6). The correlation analysis of Q values and atmospheric pressure (P), air humidity (U) and temperature (T) shows a clear dependence of the content of radon in groundwater on T and P values (Table 3). Following the major seasonal trend of air temperature, the level of radioactivity is increased in the water samples taken in winter and decreased in summer (see Fig. 6). Q values are indirectly influenced by parameter T via changes of water temperature, variations in flow rates of water sources, freezing of the top layer of soil and other processes, which parameters require further research. According to the monitoring data (see Table 3, and Fig. 6, A), the content of radon in near-surface water sources (Group I) can vary by a few and the first dozens of units, while changes by tens of becquerel per liter are recorded in the deeper near-fault water sources (Group II). As a consequence, in short periods of extreme Q values, the content of radon in a water source may increase or decrease to a value corresponding to a neighbouring radon-radioactivity group. This paper provides an overview of the radon activity of groundwater in the Baikal region and Transbaikalia with a focus on regularities in the spatial and temporal patterns of 222Rn in the water sources with Q<185 Bq/l. The nonradon waters are more abundant in the Baikal region, including areas of active use of natural resources. Although the content of 222Rn in low, such waters should be a target of further research aimed to explore medicinal water sources, assess drinking water quality, and discover the emanation precursors of strong earthquakes in the study region.