ОСОБЕННОСТИ ДЕФОРМАЦИИ КОНТИНЕНТАЛЬНОЙ И ОКЕАНИЧЕСКОЙ ЛИТОСФЕРЫ КАК СЛЕДСТВИЕ СЕВЕРНОГО ДРЕЙФА ЯДРА ЗЕМЛИ

На фоне разнообразных направлений горизонтального перемещения, сочетающегося с деформациями горизонтального растяжения, сжатия и сдвига литосферы (рис. 1), обнаружено явление дрейфа и субмеридионального сжатия континентальной и океанической литосферы, вектор которых направлен на север (рис. 7-14). С...

Full description

Bibliographic Details
Main Authors: Гончаров, Михаил, Разницин, Юрий, Баркин, Юрий
Format: Text
Language:unknown
Published: Федеральное государственное бюджетное учреждение науки Институт земной коры Сибирского отделения Российской академии наук 2012
Subjects:
Online Access:http://cyberleninka.ru/article/n/osobennosti-deformatsii-kontinentalnoy-i-okeanicheskoy-litosfery-kak-sledstvie-severnogo-dreyfa-yadra-zemli
http://cyberleninka.ru/article_covers/15098710.png
Description
Summary:На фоне разнообразных направлений горизонтального перемещения, сочетающегося с деформациями горизонтального растяжения, сжатия и сдвига литосферы (рис. 1), обнаружено явление дрейфа и субмеридионального сжатия континентальной и океанической литосферы, вектор которых направлен на север (рис. 7-14). Среди различных структурных форм и их парагенезов - индикаторов такого сжатия - ведущую роль играют надвиги северной вергентности (рис. 15-17, 19, 22-24). Этот процесс не был непрерывным, но проявлял себя во времени дискретно, накладываясь на процессы коллизионного орогенеза и платформенных деформаций континентальной литосферы и аккреции океанической коры в зонах спрединга. Выявлены три основных этапа субмеридионального сжатия океанической литосферы: позднеюрский - позднемеловой, позднемиоценовый и современный. Посредством представления о компенсационной организации тектонического течения в теле Земли предложена модель меридиональной конвекции (рис. 25) как составного элемента надглобальной конвективной геодинамической системы наиболее крупномасштабного ранга, включающей также западную компоненту дрейфа литосферы (рис. 6) и «скручивание» Земли. На фоне этой системы функционируют геодина-мические системы более мелкомасштабных рангов (таблица; рис. 2, 3), ответственные за периодическое созидание и распад суперконтинентов, тектонику литосферных плит и региональные геодинамические процессы и создающие «структурный шум», наличие которого затрудняет обнаружение структур субмеридионального сжатия, упомянутых выше. Верхний горизонтальный поток меридиональной конвекции как раз и является причиной формирования этих структур. Меридиональная конвекция - следствие установленного независимыми методами дрейфа ядра Земли к Северному полюсу и сопротивления мантии этому дрейфу (рис. 26, 27). Сопоставление формул, описывающих модель северного дрейфа литосферы и модель дрейфа ядра к Северному полюсу, позволило перебросить количественный «мост» между структурами меридионального сжатия литосферы и дрейфом ядра. Следствия из модели северного дрейфа литосферы согласуются со многими независимыми данными и концепциями. Это нарушение изостатического равновесия литосферы Антарктиды и ее высокое стояние; аномально широкий шельф Арктического океана (рис. 28, а) и повышенная мощность богатого углеводородами осадочного чехла в сочетании с ультранизкой скоростью спрединга в срединно-океаническом хребте Гаккеля; примерное равенство площадей антиподально расположенных Антарктиды и Арктического океана (рис. 28, б); удлинение (по данным GPS) параллелей в Южном полушарии и их укорочение в Северном полушарии (рис. 26); радиальные по отношению к Южному полюсу рифты и другие линеаменты в Антарктиде (рис. 29, 30); субконцен-трическая (по отношению к тому же полюсу) система спрединга вокруг Антарктиды, переходящая к северу в субмеридиональную систему в виде трех «стволов» примерно через 90° (рис. 31). Повышенная скорость северного дрейфа литосферы в полосе со средним меридианом 100° в.д. - 80° з.д., в которой сосредоточена основная масса континентальной литосферы и два «полюса» которой обозначены осями Африканского и Тихоокеанского суперплюмов (рис. 3-5, 32), обусловила следующие особенности: максимальное удлинение Антарктического континента в Южном («растянутом») полушарии (рис. 28, б); максимальное укорочение Арктического океана в Северном («сжатом») полушарии (рис. 28, а); максимальную скорость спрединга в Юго-Восточном Индийском срединном хребте (рис. 33); максимальную северную компоненту скорости горизонтальных перемещений (по данным GPS, рис. 34); максимально широкий и глубокий (до 400 км) мантийный диапир - Зондский; максимально высокий ороген - Гималаи; максимально широкое и высокое плато - Тибет; максимально длинный и глубокий рифт - Байкальский. Вблизи этой меридиональной полосы находится Индостанский индентор (рис. 20). На его фронте находятся Гималаи, Тибет и более удаленный Байкал, в его тылу - зона внутриплитных деформаций субмеридиональ-ного сжатия. К этой же полосе приурочен и п-ов Таймыр (рис. 28, а), в направлении которого и дрейфует земное ядро. Conclusions based on the model of the northern drift of the lithosphere conform to many independent data and concepts, such as disturbance of the isostatic equilibrium of the Antarctica lithosphere and its high standing; the anomalously wide shelf of the Arctic ocean (Figure 28а) and the increased thickness of the sediment cover, that is rich in hydrocarbons, in combination with the ultralow velocity of spreading in Gakkel Ridge; the approximately equal areas of Antarctica and the Arctic ocean as antipodes (Figure 28б); elongation (according to GPS data) of the parallels in the Southern hemisphere, and their shortening in the Northern hemisphere (Figure 26); radial (relative to the South Pole) rifts and other lineaments in Antarctica (Figures 29, and 30); the sub-concentric (relative to the same pole) system of spreading around Antarctica, which develops northward into the submeridional system including three ‘trunks’ at a distance of about 90° (Figure 31). Due to the higher velocity of the northern drift of the lithosphere within the band with the middle meridian 100° E 80° W, wherein the main mass of the continental lithosphere is concentrated and whose two ‘poles’ are marked by the axes of the African and Pacific superplumes (Figures 3, 4, 5, and 32), the following specific features have developed: maximum elongation of the Antarctic continent in the Southern (‘stretched’) hemisphere (Figure 28 б); maximum shortening of the Arctic ocean in the Northern (‘compressed’) hemisphere (Figure 28а); maximum spreading velocity in the SouthEastern Indian Ridge (Figure 33); maximum northern component of the horizontal displacements velocity (according to GPS data) (Figure 34); the mantle Sunda diapir of maximum width and depth (to 400 km); the Himalayas as an orogen of maximum height; Tibet as a plateau of maximum width and height; and Baikal as a rift of maximum length and depth. The Hindustan indenter is neighboring this meridional band (Figure 20). The Himalayas, Tibet and more remote Baikal are located at its front, and the zone of intra-plate deformations (also caused by the meridional compression) is revealed in the rear. Also associated with this band is the Taimyr Peninsula (Figure 28а), in the direction of which the Earth core drifts.