Depleted Mantle-sourced CFB Magmatism in the Jurassic Africa–Antarctica Rift: Petrology and 40Ar/39Ar and U/Pb Chronology of the Vestfjella Dyke Swarm, Dronning Maud Land, Antarctica

The Jurassic Vestfjella dyke swarm at the volcanic rifted margin of western Dronning Maud Land represents magmatism related to the incipient Africa–Antarctica rift zone; that is, rift-assemblage magmatism of the Karoo continental flood basalt (CFB) province. Geochemical and Nd–Sr isotopic data for b...

Full description

Bibliographic Details
Published in:Journal of Petrology
Main Authors: Luttinen, A., Heinonen, J., Kurhila, M., Jourdan, Fred, Mänttäri, I., Vuori, S., Huhma, H.
Format: Article in Journal/Newspaper
Language:unknown
Published: Oxford University Press 2015
Subjects:
Online Access:https://hdl.handle.net/20.500.11937/27351
https://doi.org/10.1093/petrology/egv022
Description
Summary:The Jurassic Vestfjella dyke swarm at the volcanic rifted margin of western Dronning Maud Land represents magmatism related to the incipient Africa–Antarctica rift zone; that is, rift-assemblage magmatism of the Karoo continental flood basalt (CFB) province. Geochemical and Nd–Sr isotopic data for basaltic and picritic dyke samples indicate diverse low-Ti and high-Ti tholeiitic compositions with εNd(180 Ma) ranging from +8 to –17. Combined with previously reported data on a subcategory of ferropicritic dykes, our new data facilitate grouping of the Vestfjella dyke swarm into seven geochemically distinct types. The majority of the dykes exhibit geochemical affinity to continental lithosphere and can be correlated with two previously identified chemical types (CT) of the wall-rock CFB lavas and are accordingly referred to as the CT1 and CT3 dykes. The less abundant Low-Nb and High-Nb dykes, a relatively enriched subtype of CT3 (CT3-E) dykes, and dykes belonging to the depleted and enriched ferropicrite suites represent magma types found only as intrusions. The chemically mid-ocean ridge basalt (MORB)-like Low-Nb and the depleted ferropicrite suite dykes represent, respectively, relatively high- and low-degree partial melting of the same overall depleted mantle (DM)-affinity source in the sublithospheric mantle.In contrast, we ascribe the chemically ocean island basalt (OIB)-like High-Nb dykes and the enriched ferropicrite suite dykes to melting of enriched components in the sublithospheric mantle. Geochemical modelling suggests that the low-Ti affinity CT1 and CT3, and high-Ti affinity CT3-E magma types of Vestfjella dyke may predominantly result from mixing of DM-sourced Low-Nb type magmas with <10 wt % of crust- and lithospheric mantle-derived melts. U/Pb zircon dating confirms synchronous emplacement of CT1 dykes and Karoo main-stage CFBs at 182·2 ± 0·9 and 182·2 ± 0·8 Ma, whereas two 40Ar/39Ar plagioclase plateau ages of 189·2 ± 2·3 Ma (CT1) and 185·5 ± 1·8 Ma (depleted ferropicrite suite), and a ...