Observing change in pelagic animals as sampling methods shift: the case of Antarctic krill

© 2024 Hill, Atkinson, Arata, Belcher, Nash, Bernard, Cleary, Conroy, Driscoll, Fielding, Flores, Forcada, Halfter, Hinke, Hückstädt, Johnston, Kane, Kawaguchi, Krafft, Krüger, La, Liszka, Meyer, Murphy, Pakhomov, Perry, Piñones, Polito, Reid, Reiss, Rombola, Saunders, Schmidt, Sylvester, Takahashi,...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Hill, Simeon L., Atkinson, Angus, Arata, Javier A., Belcher, Anna, Bengtson Nash, Susan, Bernard, Kim S., Cleary, Alison, Conroy, John A., Driscoll, Ryan, Fielding, Sophie, Flores, Hauke, Forcada, Jaume, Halfter, Svenja, Hinke, Jefferson T., Hückstädt, Luis, Johnston, Nadine M., Kane, Mary, Kawaguchi, So, Krafft, Bjørn A., Krüger, Lucas, La, Hyoung Sul, Liszka, Cecilia M., Meyer, Bettina, Murphy, Eugene J., Pakhomov, Evgeny A., Perry, Frances, Piñones, Andrea, Polito, Michael J., Reid, Keith, Reiss, Christian, Rombola, Emilce, Saunders, Ryan A., Schmidt, Katrin, Sylvester, Zephyr T., Takahashi, Akinori, Tarling, Geraint A., Trathan, Phil N., Veytia, Devi, Watters, George M., Xavier, José C., Yang, Guang
Other Authors: World Wildlife Fund, Natural Environment Research Council (UK), National Science Foundation (US), European Commission, Instituto Antártico Chileno, Instituto Milenio de Oceanografía (Chile), Korea Polar Research Institute, Ministry of Oceans and Fisheries (South Korea), Helmholtz Association, Natural Sciences and Engineering Research Council of Canada, Agencia Nacional de Investigación y Desarrollo (Chile), Fondo Nacional de Desarrollo Científico y Tecnológico (Chile), Japan Society for the Promotion of Science, University of Tasmania, Fundação para a Ciência e a Tecnologia (Portugal)
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media 2024
Subjects:
Online Access:http://hdl.handle.net/10261/361331
https://doi.org/10.3389/fmars.2024.1307402
Description
Summary:© 2024 Hill, Atkinson, Arata, Belcher, Nash, Bernard, Cleary, Conroy, Driscoll, Fielding, Flores, Forcada, Halfter, Hinke, Hückstädt, Johnston, Kane, Kawaguchi, Krafft, Krüger, La, Liszka, Meyer, Murphy, Pakhomov, Perry, Piñones, Polito, Reid, Reiss, Rombola, Saunders, Schmidt, Sylvester, Takahashi, Tarling, Trathan, Veytia, Watters, Xavier and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Understanding and managing the response of marine ecosystems to human pressures including climate change requires reliable large-scale and multi-decadal information on the state of key populations. These populations include the pelagic animals that support ecosystem services including carbon export and fisheries. The use of research vessels to collect information using scientific nets and acoustics is being replaced with technologies such as autonomous moorings, gliders, and meta-genetics. Paradoxically, these newer methods sample pelagic populations at ever-smaller spatial scales, and ecological change might go undetected in the time needed to build up large-scale, long time series. These global-scale issues are epitomised by Antarctic krill (Euphausia superba), which is concentrated in rapidly warming areas, exports substantial quantities of carbon and supports an expanding fishery, but opinion is divided on how resilient their stocks are to climatic change. Based on a workshop of 137 krill experts we identify the challenges of observing climate change impacts with shifting sampling methods and suggest three tractable solutions. These are to: improve overlap and calibration of new with traditional methods; improve ...