Extraction and applications of Rayleigh wave ellipticity in polar regions

Seismic Rayleigh wave ellipticity measurements are the horizontal-to-vertical ratio of the Rayleigh wave particle motion, and are sensitive to the subsurface structure beneath a seismic station. H/V ratios measured from the ambient vibrations of the Earth are being increasingly used in glaciological...

Full description

Bibliographic Details
Published in:Annals of Glaciology
Main Authors: Jones, Glenn A., Kulessa, Bernd, Ferreira, A. M. G., Schimmel, Martin, Berbellini, Andrea, Morelli, Andrea
Other Authors: European Commission, Agencia Estatal de Investigación (España)
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2023
Subjects:
Online Access:http://hdl.handle.net/10261/361092
https://doi.org/10.1017/aog.2023.1
Description
Summary:Seismic Rayleigh wave ellipticity measurements are the horizontal-to-vertical ratio of the Rayleigh wave particle motion, and are sensitive to the subsurface structure beneath a seismic station. H/V ratios measured from the ambient vibrations of the Earth are being increasingly used in glaciological applications to determine glacier and ice sheet thickness, seismic velocities and firn properties. Using the newly developed degree-of-polarisation (DOP-E) method which exploits the polarisation properties of seismic noise, we identify and extract Rayleigh waves from seismic stations in Greenland, and relate them to sea ice processes and the geology of the upper crust. Finally, we provide some suggestions for future applications of DOP-E method to gain greater insight into seasonal and long-term variability of sea ice formation and breakup as well as the monitoring of ice sheet thickness, subglacial environment and firn layers in the poles. G.A.J. is funded through the by the Sêr Cymru II Program in Low Carbon Energy and the Environment (European Regional Development Fund and Welsh European Funding Office; Project number 80761-SU-SU093). A.M.G.F. is grateful to support from NERC grant NE/N011791/1. M.S. thanks SANIMS (RTI2018-095594-B-I00). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 101001601).