Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article)
Floods in the Venice city centre result from the superposition of several factors: astronomical tides; seiches; and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by atmospheric planetary waves. All these factors can contribute to positive water hei...
Published in: | Natural Hazards and Earth System Sciences |
---|---|
Main Authors: | , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Copemicus Gesellschaften
2021
|
Subjects: | |
Online Access: | http://hdl.handle.net/10261/342338 https://doi.org/10.5194/nhess-21-2705-2021 |
_version_ | 1821767273791094784 |
---|---|
author | Lionello P. Barriopedro, David Ferrarin C. Nicholls R.J. Orlic M. Raicich F. Reale M. Umgiesser G. Vousdoukas M. Zanchettin D |
author2 | Croatian Science Foundation Ministerio de Economía y Competitividad (España) |
author_facet | Lionello P. Barriopedro, David Ferrarin C. Nicholls R.J. Orlic M. Raicich F. Reale M. Umgiesser G. Vousdoukas M. Zanchettin D |
author_sort | Lionello P. |
collection | Digital.CSIC (Spanish National Research Council) |
container_issue | 8 |
container_start_page | 2705 |
container_title | Natural Hazards and Earth System Sciences |
container_volume | 21 |
description | Floods in the Venice city centre result from the superposition of several factors: astronomical tides; seiches; and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by atmospheric planetary waves. All these factors can contribute to positive water height anomalies individually and can increase the probability of extreme events when they act constructively. The largest extreme wáter heights are mostly caused by the storm surges produced by the sirocco winds, leading to a characteristic seasonal cycle, with the largest and most frequent events occurring from November to March. Storm surges can be produced by cyclones whose centres are located either north or south of the Alps. Historically, the most intense events have been produced by cyclogenesis in the western Mediterranean, to the west of the main cyclogenetic area of the Mediterranean region in the Gulf of Genoa. Only a small fraction of the inter-annual variability in extreme wáter heights is described by fluctuations in the dominant patterns of atmospheric circulation variability over the Euro-Atlantic sector. Therefore, decadal fluctuations in water height extremes remain largely unexplained. In particular, the effect of the 11-year solar cycle does not appear to be steadily present if more than 100 years of observations are considered. The historic increase in the frequency of floods since the mid-19th century is explained by relative mean sea level rise. Analogously, future regional relative mean sea level rise will be the most important driver of increasing duration and intensity of Venice floods through this century, overcompensating for the small projected decrease in marine storminess. The future increase in extreme water heights covers a wide range, largely reflecting the highly uncertain mass contributions to future mean sea level rise from the melting of Antarctica and Greenland ice sheets, especially towards the end of the century. For a high emission scenario (RCP8.5), the magnitude of ... |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctica Greenland |
genre_facet | Antarc* Antarctica Greenland |
geographic | Greenland |
geographic_facet | Greenland |
id | ftcsic:oai:digital.csic.es:10261/342338 |
institution | Open Polar |
language | unknown |
op_collection_id | ftcsic |
op_container_end_page | 2731 |
op_doi | https://doi.org/10.5194/nhess-21-2705-2021 |
op_relation | #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//CGL2015-69699-R/ES/PALEOMODELIZACION DESDE UNA PERSPECTIVA ESTRATOSFERICA/ Publisher's version http://dx.doi.org/10.5194/nhess-21-2705-2021 Sí doi:10.5194/nhess-21-2705-2021 issn: 1561-8633 Natural Hazards and Earth System Science 21: 2705- 2731 (2021) http://hdl.handle.net/10261/342338 |
op_rights | open |
publishDate | 2021 |
publisher | Copemicus Gesellschaften |
record_format | openpolar |
spelling | ftcsic:oai:digital.csic.es:10261/342338 2025-01-16T19:34:39+00:00 Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) Lionello P. Barriopedro, David Ferrarin C. Nicholls R.J. Orlic M. Raicich F. Reale M. Umgiesser G. Vousdoukas M. Zanchettin D Croatian Science Foundation Ministerio de Economía y Competitividad (España) 2021 http://hdl.handle.net/10261/342338 https://doi.org/10.5194/nhess-21-2705-2021 unknown Copemicus Gesellschaften #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/MINECO//CGL2015-69699-R/ES/PALEOMODELIZACION DESDE UNA PERSPECTIVA ESTRATOSFERICA/ Publisher's version http://dx.doi.org/10.5194/nhess-21-2705-2021 Sí doi:10.5194/nhess-21-2705-2021 issn: 1561-8633 Natural Hazards and Earth System Science 21: 2705- 2731 (2021) http://hdl.handle.net/10261/342338 open artículo de revisión 2021 ftcsic https://doi.org/10.5194/nhess-21-2705-2021 2024-01-16T11:56:36Z Floods in the Venice city centre result from the superposition of several factors: astronomical tides; seiches; and atmospherically forced fluctuations, which include storm surges, meteotsunamis, and surges caused by atmospheric planetary waves. All these factors can contribute to positive water height anomalies individually and can increase the probability of extreme events when they act constructively. The largest extreme wáter heights are mostly caused by the storm surges produced by the sirocco winds, leading to a characteristic seasonal cycle, with the largest and most frequent events occurring from November to March. Storm surges can be produced by cyclones whose centres are located either north or south of the Alps. Historically, the most intense events have been produced by cyclogenesis in the western Mediterranean, to the west of the main cyclogenetic area of the Mediterranean region in the Gulf of Genoa. Only a small fraction of the inter-annual variability in extreme wáter heights is described by fluctuations in the dominant patterns of atmospheric circulation variability over the Euro-Atlantic sector. Therefore, decadal fluctuations in water height extremes remain largely unexplained. In particular, the effect of the 11-year solar cycle does not appear to be steadily present if more than 100 years of observations are considered. The historic increase in the frequency of floods since the mid-19th century is explained by relative mean sea level rise. Analogously, future regional relative mean sea level rise will be the most important driver of increasing duration and intensity of Venice floods through this century, overcompensating for the small projected decrease in marine storminess. The future increase in extreme water heights covers a wide range, largely reflecting the highly uncertain mass contributions to future mean sea level rise from the melting of Antarctica and Greenland ice sheets, especially towards the end of the century. For a high emission scenario (RCP8.5), the magnitude of ... Article in Journal/Newspaper Antarc* Antarctica Greenland Digital.CSIC (Spanish National Research Council) Greenland Natural Hazards and Earth System Sciences 21 8 2705 2731 |
spellingShingle | Lionello P. Barriopedro, David Ferrarin C. Nicholls R.J. Orlic M. Raicich F. Reale M. Umgiesser G. Vousdoukas M. Zanchettin D Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) |
title | Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) |
title_full | Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) |
title_fullStr | Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) |
title_full_unstemmed | Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) |
title_short | Extremes floods of Venice: characteristics, dynamics, past and future evolution (review article) |
title_sort | extremes floods of venice: characteristics, dynamics, past and future evolution (review article) |
url | http://hdl.handle.net/10261/342338 https://doi.org/10.5194/nhess-21-2705-2021 |