Editorial: Cryospheric remote sensing

The cryosphere, including ice caps, ice sheets, ice shelves, mountain glaciers, snow cover, permafrost, and sea ice, is a key component of the Earth system. It plays a critical role in response to climate change and serves as a primary source of freshwater (Li et al., 2018; Yao et al., 2022). In rec...

Full description

Bibliographic Details
Published in:Frontiers in Remote Sensing
Main Authors: Zheng, Guoxiong, Muhammad, Sher, Sattar, Ashim, Ballesteros-Cánovas, Juan Antonio
Format: Other Non-Article Part of Journal/Newspaper
Language:English
Published: Frontiers Media 2023
Subjects:
Ice
Online Access:http://hdl.handle.net/10261/336900
https://doi.org/10.3389/frsen.2023.1204667
Description
Summary:The cryosphere, including ice caps, ice sheets, ice shelves, mountain glaciers, snow cover, permafrost, and sea ice, is a key component of the Earth system. It plays a critical role in response to climate change and serves as a primary source of freshwater (Li et al., 2018; Yao et al., 2022). In recent decades, the cryosphere has undergone rapid changes, such as the melting of glaciers and sea ice, the decrease of snow cover and the degradation of permafrost. These changes have far-reaching consequences for both Earth’s climate system and the living environment of humans. Therefore, cryosphere research is of great importance to understand cryospheric change and its potential impacts on other spheres of the Earth. Over the last decades, there have been notable advancements in cryosphere monitoring through remote sensing technology. The improvement in spatial and temporal resolution of satellite imagery has contributed significantly to enhancing the understanding of cryosphere processes as well as allowing the development of new algorithms, data products and interdisciplinary integration with other fields of study. Despite significant advancements in cryosphere research, certain limitations still exist. Satellite images can be affected by cloud cover, atmospheric interference, and other factors that can limit accuracy and reliability. Furthermore, integrating these data with ground-based measurements and other forms of data is still challenging to comprehensively understand the changes in the cryosphere and its response to climate change. Remote sensing provides a viable option for studying the cryosphere in space due to its inaccessibility. Modern satellites and high-quality data provide a rich resource for cryosphere-related studies, while efficient algorithms make it more capable. Remote sensing is typically used to evaluate past changes and regularly monitor different components of the cryosphere. This facilitates better attribution and prediction of climatic parameters and their potential impacts on the ...