Nitrate Supply Routes and Impact of Internal Cycling in the North Atlantic Ocean Inferred From Nitrate Isotopic Composition

15 pages, 6 figures, 1 table In this study we report full-depth water column profiles for nitrogen and oxygen isotopic composition (δ15N and δ18O) of nitrate (NO3−) during the GEOTRACES GA01 cruise (2014). This transect intersects the double gyre system of the subtropical and subpolar regions of the...

Full description

Bibliographic Details
Published in:Global Biogeochemical Cycles
Main Authors: Deman, F., Fonseca-Batista, D., Roukaerts, A., García-Ibáñez, Maribel I., Le Roy, Emilie, Thilakarathne, E. P. D. N., Elskens, M., Dehairs, Frank, Fripiat, F.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2021
Subjects:
Online Access:http://hdl.handle.net/10261/242850
https://doi.org/10.1029/2020GB006887
Description
Summary:15 pages, 6 figures, 1 table In this study we report full-depth water column profiles for nitrogen and oxygen isotopic composition (δ15N and δ18O) of nitrate (NO3−) during the GEOTRACES GA01 cruise (2014). This transect intersects the double gyre system of the subtropical and subpolar regions of the North Atlantic separated by a strong transition zone, the North Atlantic Current. The distribution of NO3− δ15N and δ18O shows that assimilation by phytoplankton is the main process controlling the NO3− isotopic composition in the upper 150 m, with values increasing in a NO3− δ18O versus δ15N space along a line with a slope of one toward the surface. In the subpolar gyre, a single relationship between the degree of NO3− consumption and residual NO3− δ15N supports the view that NO3− is supplied via Ekman upwelling and deep winter convection, and progressively consumed during the Ekman transport of surface water southward. The co-occurrence of partial NO3− assimilation and nitrification in the deep mixed layer of the subpolar gyre elevates subsurface NO3− δ18O in comparison to deep oceanic values. This signal propagates through isopycnal exchanges to greater depths at lower latitudes. With recirculation in the subtropical gyre, cycles of quantitative consumption-nitrification progressively decrease subsurface NO3− δ18O toward the δ18O of regenerated NO3−. The low NO3− δ15N observed south of the Subarctic Front is mostly explained by N2 fixation, although a contribution from the Mediterranean outflow is required to explain the lower NO3− δ15N signal observed between 600 and 1500 m depth close to the Iberian margin The GEOVIDE project was co-funded by the French national program LEFE/INSU (GEOVIDE), ANR Blanc (GEOVIDE) and RPDOC, LabEX MER and IFREMER. F. Deman was supported by the Belgian Federal Science Policy Office (Belspo contract BL/12/C63) while writing the manuscript. This work was financed by Flanders Research Foundation (FWO contract G0715.12N) and Vrije Universiteit Brussel, R&D, Strategic Research ...