Antarctic sea ice viral activity increases primary aerosolization

Trabajo final presentado por Arianna Rocchi para el Máster Interuniversitario en Biología Marina de la Universidade da Coruña (UDC), realizado bajo la dirección del Dr. Manuel Dall'Osto y de la Dra. Dolors Vaqué Vidal del Institut de Ciències del Mar (ICM-CSIC).-- 37 pages, 19 figures, 1 table...

Full description

Bibliographic Details
Main Author: Rocchi, Arianna
Other Authors: Dall'Osto, Manuel, Vaqué, Dolors
Format: Master Thesis
Language:English
Published: Universidad de La Coruña 2020
Subjects:
Online Access:http://hdl.handle.net/10261/216560
https://doi.org/10.20350/digitalCSIC/12616
Description
Summary:Trabajo final presentado por Arianna Rocchi para el Máster Interuniversitario en Biología Marina de la Universidade da Coruña (UDC), realizado bajo la dirección del Dr. Manuel Dall'Osto y de la Dra. Dolors Vaqué Vidal del Institut de Ciències del Mar (ICM-CSIC).-- 37 pages, 19 figures, 1 table [EN] The ocean covers 71% of the surface of our planet Earth and viruses are extremely abundant. Marine viruses play a key role in modulating several biogeochemical cycles. Still - very little is known about their role in the production of aerosol, clouds and climate change. A recent interest on the marine viruses' contribution to the marine aerosols is growing, revealing that - after viral infection - phytoplankton (nanoflagellates) and prokaryote (bacteria) cells release organic matter to the water. The new released organic matter can contribute at making primary marine aerosol - produced at the sea surface through interaction between wind and waves, and subsequent bubble bursting. Aerosol particles affect the hydrological cycle because they act as cloud condensation nuclei (CCN) thereby influencing the formation and development of clouds. Therefore, the aim of this thesis is to test if the lysis of prokaryotes (bacteria) and eukaryotes (heterotrophic and phototrophic nanoflagellates) - produced by viruses in melted sea ice - affects the production of primary organic marine aerosols. To achieve this goal, we carried out melted sea ice - atmosphere experiments in a marine controlled and bubble-bursting aerosol generation chamber in the laboratory during the Spanish 2018-2019 Antarctic campaign. This thesis is presented into two main sections: 1) results produced in this thesis (mortality experiments and biological measurements) and 2) results discussed with complementary data produced by other colleagues. Preliminary results are promising, showing an increase in viral abundance and production, rate of lysed prokaryotes and eukaryotes and the organic carbon released from these lysed cells when viral concentrate is added, ...