Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia

23 pages, 15 figures, 4 tables. Hydrogen-lean kerogen (atomic H/C < 0.46) isolated from the 3.4 Ga Strelley Pool Chert in the North Pole area, Pilbara Craton, Western Australia, were studied by vibrational spectroscopy (Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy), nucle...

Full description

Bibliographic Details
Published in:Precambrian Research
Main Authors: Marshall, Craig P., Love, Gordon D., Snape, Colin E., Hill, Andrew C., Allwood, Abigail C., Walter, Malcolm R., Van-Kranendonk, Martin J., Bowden, Stephen A., Sylva, Sean P., Summons, Roger E.
Other Authors: Australian Research Council, Macquarie University
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2007
Subjects:
Online Access:http://hdl.handle.net/10261/18591
https://doi.org/10.1016/j.precamres.2006.12.014
https://doi.org/10.13039/501100000923
https://doi.org/10.13039/501100001230
Description
Summary:23 pages, 15 figures, 4 tables. Hydrogen-lean kerogen (atomic H/C < 0.46) isolated from the 3.4 Ga Strelley Pool Chert in the North Pole area, Pilbara Craton, Western Australia, were studied by vibrational spectroscopy (Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy), nuclear magnetic resonance spectroscopy (solid state 13C NMR spectroscopy), catalytic hydropyrolysis followed by gas chromatography mass spectrometry (HyPy–GC–MS), and isotope ratio mass spectrometry (IRMS). The kerogen occurs in sedimentary rocks as clasts and clots deposited together with other detrital materials that are finely disseminated throughout a chert matrix. The bulk kerogen δ13C values range from −28.3 to −35.8‰. Solid-state 13C NMR spectroscopy and FTIR spectroscopy reveals that the kerogen is highly aromatic (fa varying from 0.90 to 0.92) and contains only minor aliphatic carbon or carbon-oxygenated (C–O) functionalities. The Raman carbon first-order spectra for the isolated kerogens are typical of spectra obtained from disordered sp2 carbons with low 2-D ordering (biperiodic structure). The implications of the Raman results show low 2-D ordering throughout the carbonaceous network indicate the incorrect usage of the term graphite in the literature to describe the kerogen or carbonaceous material in the Warrawoona cherts. Hydropyrolysates contain aromatic compounds consisting of 1-ring to 7-ring polycyclic aromatic hydrocarbons which were covalently bound into the kerogen as well as alkanes (linear, branched and cyclic) which were most probably trapped in the microporous network of the kerogen. These PAHs have mainly C1- and C2-alkylation while C3+-substitued aromatics are low in abundance and do not show a high degree of branched alkylation. For the first time we have shown a correlation between elemental analysis (H/C atomic ratios), Raman spectroscopic parameters (ID1/IG, ID1/(ID1 + IG), and La), and the degree of alkylation of bound polyaromatic molecular constituents generated from HyPy for Archaean ...