The global fire-productivity relationship

[Aim] It has been suggested that on a global scale, fire activity changes along the productivity/aridity gradient following a humped relationship, i.e. the intermediate fire-productivity hypothesis. This relation should be driven by differing relative roles of the main fire drivers (weather and fuel...

Full description

Bibliographic Details
Published in:Global Ecology and Biogeography
Main Authors: Pausas, J. G., Ribeiro, Eloi
Other Authors: Generalitat Valenciana, Ministerio de Ciencia e Innovación (España)
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley & Sons 2013
Subjects:
Online Access:http://hdl.handle.net/10261/140126
https://doi.org/10.1111/geb.12043
https://doi.org/10.13039/501100003359
https://doi.org/10.13039/501100004837
Description
Summary:[Aim] It has been suggested that on a global scale, fire activity changes along the productivity/aridity gradient following a humped relationship, i.e. the intermediate fire-productivity hypothesis. This relation should be driven by differing relative roles of the main fire drivers (weather and fuel) along the productivity gradient. However, the full intermediate fire-productivity model across all world ecosystems remains to be validated. [Location] The entire globe, excluding Antarctica. [Methods] To test the intermediate fire-productivity hypothesis, we use the world ecoregions as a spatial unit and, for each ecoregion, we compiled remotely sensed fire activity, climate, biomass and productivity information. The regression coefficient between monthly MODIS fire activity and monthly maximum temperature in each ecoregion was considered an indicator of the sensitivity of fire to high temperatures in the ecoregion. We used linear and generalized additive models to test for the linear and humped relationships. [Results] Fire occurs in most ecoregions. Fire activity peaked in tropical grasslands and savannas, and significantly decreased towards the extremes of the productivity gradient. Both the sensitivity of fire to high temperatures and above-ground biomass increased monotonically with productivity. In other words, fire activity in low-productivity ecosystems is not driven by warm periods and is limited by low biomass; in contrast, in high-productivity ecosystems fire is more sensitive to high temperatures, and in these ecosystems, the available biomass for fires is high. [Main conclusion] The results support the intermediate fire-productivity model on a global scale and suggest that climatic warming may affect fire activity differently depending on the productivity of the region. Fire regimes in productive regions are vulnerable to warming (drought-driven fire regime changes), while in low-productivity regions fire activity is more vulnerable to fuel changes (fuel-driven fire regime changes). © 2012 John ...