Aerial observations of sea ice break-up by ship waves

We provide the first in situ observations of floe size distributions (FSD) resulting from wave-induced sea ice break-up. In order to obtain such data, an unmanned aerial vehicle was deployed from the Canadian Coast Guard Ship Amundsen as it sailed in the vicinity of large ice floes in Baffin Bay and...

Full description

Bibliographic Details
Main Authors: Dumas-Lefebvre, Elie, Dumont, Dany
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-2021-328
https://tc.copernicus.org/preprints/tc-2021-328/
Description
Summary:We provide the first in situ observations of floe size distributions (FSD) resulting from wave-induced sea ice break-up. In order to obtain such data, an unmanned aerial vehicle was deployed from the Canadian Coast Guard Ship Amundsen as it sailed in the vicinity of large ice floes in Baffin Bay and in the St. Lawrence Estuary, Canada. When represented as probability density functions weighted by the surface of ice floes, the FSDs exhibit a strong modal shape which confirms the preferential size hypothesis debated in the scientific community. Both FSDs are compared to a flexural rigidity length scale, which depends on ice properties, and with the wavelength scale. This comparison tends to show that the maximal distance between cracks is preferentially dictated by sea ice thickness and elasticity rather than by the wavelength. Temporal analysis of one fracture event is also done. Results show that the break-up advances almost as fast as the wave energy and that waves responsible for the break-up propagate following the mass loading dispersion relation. Moreover, our experiments show that thicker ice can attenuate wave less than thinner ice. This method thus provides key information on the wave-induced FSD, clarifies theoretical aspects from the construction of the FSD to its implementation in models and brings new knowledge regarding the temporal evolution of sea ice break-up.