A statistical definition of the Antarctic marginal ice zone

The marginal ice zone (MIZ) is a transitional region between the open ocean and pack ice. This region is circumpolar in the Antarctic, with different sea ice types depending on the season and the sector of the Southern Ocean. The MIZ extent have traditionally been inferred from satellite-derived sea...

Full description

Bibliographic Details
Main Author: Vichi, Marcello
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/tc-2021-307
https://tc.copernicus.org/preprints/tc-2021-307/
Description
Summary:The marginal ice zone (MIZ) is a transitional region between the open ocean and pack ice. This region is circumpolar in the Antarctic, with different sea ice types depending on the season and the sector of the Southern Ocean. The MIZ extent have traditionally been inferred from satellite-derived sea-ice concentration (SIC, one of the essential climate variables), using the 15–80 % range as indicative of sea ice with MIZ characteristics. This proxy has been proven effective in the Arctic, where there is a good correspondence between sea-ice type and sea-ice cover. It is less reliable in the Southern Ocean, where sea-ice type is less linked to the concentration value, since wave penetration and free drift conditions have been reported with 100 % cover. I propose an alternative definition of the MIZ that is based on statistical properties of the SIC and its spatial and temporal variability. The indicator is derived from the standard deviation of daily SIC anomalies, which is often employed in the climate sciences. The use of a monthly climatological mean as the baseline allows to capture changes due to both the seasonal advancement/retreat and the local weather-driven variability typical of less consolidated sea-ice conditions. This method has been tested on the available climate data records to derive maps of the MIZ distribution over the year. It reconciles the discordant seasonal extent estimates using the SIC threshold, which is now independent of the used algorithm. This indicator also allows to derive the climatological probability of exceeding a certain threshold of SIC variability, which can be used for ship navigation, design of observational networks and for testing the skills of sea-ice models in forecasting or climate mode.