Long-term variation of sea ice and its response to thermodynamic factors in the Northwest Passage of the Canadian Arctic Archipelago

Sea ice conditions in the Canadian Arctic Archipelago (CAA) play a key role in the navigation of the Northwest Passage (NWP). Based on the observed and simulated sea ice concentration and thickness data, we studied the temporal and spatial characteristics of sea ice from 1979 to 2017 in the NWP of t...

Full description

Bibliographic Details
Main Authors: Shen, Xinyi, Zhang, Yu, Chen, Changsheng, Hu, Song
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/tc-2020-215
https://tc.copernicus.org/preprints/tc-2020-215/
Description
Summary:Sea ice conditions in the Canadian Arctic Archipelago (CAA) play a key role in the navigation of the Northwest Passage (NWP). Based on the observed and simulated sea ice concentration and thickness data, we studied the temporal and spatial characteristics of sea ice from 1979 to 2017 in the NWP of the CAA and evaluated the sea ice conditions along the southern and northern routes of the NWP. Against the background of the rapid retreat of Arctic sea ice, the 39-year observed sea ice concentration of the NWP exhibited a relatively large decreasing trend in summer and fall, while heavy sea ice conditions were maintained in winter and spring, with a slight increasing trend. Consistent with Arctic sea ice, the sea ice extent in the NWP displayed a decreasing trend of −2.34 %/10 a, with its minimum occurring in 2012. The sea ice thickness in most subregions of the NWP showed a decreasing trend, with the exception of Lancaster Sound. The decreasing trend of sea ice thickness in the NWP was estimated to −0.16 m/10 a. Based on the sea ice concentration and thickness, however, the sea ice conditions were heavier along the northern route than the southern route. This study considered both of these routes, and we selected and evaluated more specific pathways. The correlation results between the sea ice and atmospheric and oceanic thermodynamic factors in the NWP suggested that the thermodynamic factors had a greater impact on sea ice in the summer and fall, and the variations of sea ice concentration were more closely correlated with the thermodynamic factors than sea ice thickness. The sea surface temperature (SST) had a higher correlation with sea ice concentration than surface air temperature (SAT), while SAT exhibited a higher correlation with sea ice thickness than SST. The residual amount of sea ice concentration and thickness in the fall, associated with the fall SAT and SST, contributed to the formation of sea ice in the following winter and spring.