Diagnosing the sensitivity of grounding line flux to changes in sub-ice shelf melting

We seek to understand causal connections between changes in sub-ice shelf melting, ice shelf buttressing, and grounding-line flux. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding line flux due to localized ice thickness perturbations – a proxy for changes in...

Full description

Bibliographic Details
Main Authors: Zhang, Tong, Price, Stephen F., Hoffman, Matthew J., Perego, Mauro, Asay-Davis, Xylar
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/tc-2020-12
https://tc.copernicus.org/preprints/tc-2020-12/
Description
Summary:We seek to understand causal connections between changes in sub-ice shelf melting, ice shelf buttressing, and grounding-line flux. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding line flux due to localized ice thickness perturbations – a proxy for changes in sub-ice shelf melting – applied to idealized (MISMIP+) and realistic (Larsen C) domains. From our experiments, we identify a correlation between a locally derived buttressing number on the ice shelf, based on the first principal stress, and changes in the integrated grounding line flux. The origin of this correlation, however, remains elusive from a physical perspective; while local thickness perturbations on the ice shelf (thinning) generally correspond to local increases in buttressing, their integrated impact on changes at the grounding line are exactly the opposite (buttressing at the grounding line decreases and ice flux at the grounding line increases). This and additional complications encountered when examining realistic domains motivates us to seek an alternative approach, an adjoint-based method for calculating the sensitivity of the integrated grounding line flux to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for assessing grounding line flux sensitivity to changes in sub-ice shelf melting.